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Abstract. Painful experiences during clinical procedures can have detrimental 

effects on the physical and mental health of a patient. Current pain reduction 

methods can be effective in reducing pain, however these methods are not with-

out fault. Active distraction via computer games have been proven to effectively 

reduce the experience of pain. However, the potential of this distraction to effec-

tively alleviate pain is dependent on players’ engagement with the game, which 

is determined by the difficulty of the game and the skill of the player. This paper 

aims to model and classify immersion through increasingly difficult levels of 

game play, in the presence of pain, using functional Near Infrared Spectroscopy 

(fNIRS) and heart rate data. Twenty people participated in a study wherein fNIRS 

data (4 channels located at the prefrontal cortex, four channels located at the so-

matosensory cortex) and heart rate data were collected whilst participants were 

subjected to experimental pain, via the Cold Pressor Test (CPT). Participants 

played a computer game at varying difficultly levels as a distraction. Data were 

then pre-processed using an Acceleration Based Movement Artefact Reduction 

Algorithm (AMARA) and Correlation Based Signal Improvement (CBSI). Clas-

sification was subsequently undertaken using Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM) and Recursive Partitioning (rPart). The 

results demonstrate a maximum accuracy of 99.2% for the binary detection of 

immersion in the presence of pain. 

Keywords: Functional Near Infrared Spectroscopy, Machine Learning, Classi-

fication, Immersion, Gaming, Pain. 

1 Introduction 

The experience of pain can have long lasting and detrimental effects on the sufferer, 

including Post Traumatic Stress Disorder and dissociative experiences [1], [2]. As such, 
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adequately managing pain is crucial to alleviate discomfort. It is common for opioids 

to be administered as a method of pain relief and anxiety reduction in clinical settings. 

However, this method of pain control is associated with a number of serious adverse 

effects, including tolerance and withdrawal symptoms from opioid addiction, such as 

insomnia, vomiting, diarrhoea and tremors [3]. However, distraction techniques are 

non-pharmaceutical and can be an effective alternative in reducing the perception of 

pain, due to selective attention. This is especially prevalent in patients whose tendency 

to catastrophize can affect their perception of pain [4].  Pain is considered to be a threat-

ening form of stimulation that can interrupt attention to other stimuli in the environment 

[5]. However, directing attention away from painful stimuli, through goal-orientated 

tasks, can modulate this interruptive function of pain and deliver analgesic relief from 

painful stimulation [6]. 

In order to maximize the effectiveness of distraction, the distracting stimuli or task 

must require a high level of cognitive effort in order to draw attention away from pain-

ful stimuli [7]. There are a wide variety of techniques available to distract people from 

pain, such as watching television or reading a book, however computer games have 

been proven to be the most effective approach [8]–[10]. The act of playing a computer 

game functions as an active distraction, requiring effortful pursuit of game-related goals 

and focused attention, whereas watching television is relatively passive, in comparison. 

For a distraction technique to effectively distract from pain, it must require a high de-

gree of attentional focus and mobilization of mental effort. The psychological demands 

of a computer game can create an immersive experience that actively distracts from 

pain stimulation [11]. However, achieving this immersive experience is not straightfor-

ward. As noted by Fairclough et al. [12], most games are aimed at an ‘ideal player’, but 

this ideal player does not exist. Some players will have more or less gaming experience 

than said ‘ideal player’ and will therefore find a standard game to be either too easy or 

too difficult. It is important that the demands or difficulty of the game are optimized 

and adapted per player to engage the individual according to their capabilities. How-

ever, adaptive gaming is a method that can be used to enhance immersion by matching 

game demand to the engagement of the player [13]. In order to create an adaptive game, 

it is essential to quantify the attentional state of the player. 

This paper aims to model and classify immersion of a player using implicit measures 

of physiological and neurological data, in order to distract from the experience of pain. 

The platform includes a number of devices to collect various streams of data, including 

Functional Near Infrared Spectroscopy (fNIRS), which is used to passively record neu-

rovascular data, electrocardiogram (ECG) to collect heart rate and an accelerometer to 

measure head movement. The hypothesis of this paper is that immersion can be classi-

fied using implicit measures, such as fNIRS and heart rate, and that the experience of 

immersion can reduce the experience of pain. A study was undertaken to determine the 

effectiveness of using machine learning classifiers to predict the level of immersion. 

Collecting a subjective measure of immersion and a behavioral measure of pain enables 

us to understand how the physiology and physicality of a person is affected under such 

conditions. These data can then be used to verify the effects of pain tolerance, and the 

effects that a distraction task has on the cortical process. 
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2 Related Work 

Csikszentmihalyi [14] coined the term ‘flow’ in reference to the psychological state 

experienced by a person when they are totally involved with a task [15]. The flow model 

focuses on three cognitive states: boredom, flow and anxiety, in order to describe this 

optimal realm of engagement and immersion. 

Flow is an ideal state for an active distraction from pain, whilst both anxiety and 

boredom will prevent the player from entering the flow state. However, tailoring the 

level of game demand in order to achieve this state is difficult, due to the individual 

differences of players. This theory indicates that monitoring the players in-game per-

formance is not sufficient for determining player state, because it would be unknown 

as to whether a poorer performance was due to anxiety (as the game is too difficult) or 

boredom (as the game is not difficult enough) [16]. Using game metrics alone would 

also not allow the level of cognitive effort that a player was exerting to be determined, 

as there would be no way to identify whether successful game play was due to high 

effort or low difficulty. This is especially relevant when considering the previous point 

that there is no ‘ideal player’ for a game. The experience of flow is considered to be 

incredibly delicate and easily broken. This means that outside stimuli are likely to de-

crease the chances of the player entering (or remaining in) the flow state [15]. For this 

reason, it would not be suitable for a player to provide a self-score of engagement, as 

the player would have to attend to this question rather than to the game. In this instance, 

adaptive gaming would be an ideal solution to enhance immersion by personalizing the 

game to the player. 

Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique de-

signed to measure neurovascular coupling/neuronal activation in the cortex. Neurovas-

cular coupling is characterized by an increase in oxygenated hemoglobin (HbO) and a 

decrease in deoxygenated hemoglobin (Hbb). One major benefit of fNIRS over other 

techniques, such as function Magnetic Resonance Imaging (fMRI), is the absence of 

any need to confine a participant within an apparatus, which enables more flexible data 

capture to be undertaken [17]. In addition, fNIRS also has a greater spatial resolution 

than other techniques, such as electroencephalogram (EEG) [18]. fNIRS requires the 

placement of a montage of sources and detectors, secured to a cap, on a participant’s 

head. The sources emit infrared light, which can penetrate the skull and the outermost 

10-15 millimeters of intracranial space. fNIRS works because skin, bone and tissue 

have a low absorbency rate for infrared light, whereas HbO and Hbb have a high ab-

sorbency rate. Therefore, the amount of light that is returned to the detectors indicates 

the changes in HbO and Hbb within the cortex. These data can be used to infer psycho-

logical concepts, such as attentional state, based on relative level of neuronal activation 

provoked by a set of stimuli or a specific task [19]. 

fNIRS has previously been used to monitor attentional state, using machine learning 

to classify the resulting data [18], [20]. These studies observed maximum classification 

accuracies of 80% and 90% respectively, in the distinction between high and low atten-

tional states. fNIRS have also been used to observe pain signals in the brain with the 

intention of demonstrating the feasibility of using the technology as a measure of pain 

response [21]. One drawback of fNIRS data is that it is highly affected by movement 
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from the participant, especially movement of the head, and physiological changes. For 

instance, if an individual becomes excited, their heart will beat faster and more blood 

will circulate [22]. This is true also of a pain response [23]. Both acceleration and phys-

iological data are required to ensure the clearest possible fNIRS signal [24]. Head 

movement artefacts contained within fNIRS data can lead to false negatives and false 

positives, where it would appear that a participant is more or less engaged in a task than 

they actually are. Using filters based on acceleration allows for the removal of head 

movement artefacts. Acceleration based filters will also enable genuine responses in 

the brain to be preserved, and not discounted as movement artefacts. 

3 Materials and Methods 

Our approach focused on collecting fNIRS, heart rate, and head movement (via accel-

eration) data under three distinct conditions, whereby participants 1) played a computer 

game, 2) were exposed to a painful stimulus and 3) played a computer game whilst 

being exposed to a painful stimulus. The study was carried out to determine whether 

pain tolerance was increased when a distraction task was used (i.e. playing the game) 

and was conducted as a precursor to the development of a real-time adaptive gaming 

system. The purpose of this paper is to classify immersion of the player during increas-

ingly difficult levels of game play in order to determine whether immersion can be 

quantified using objective physiological and neurophysiological measures. 

3.1 Participants 

Data were collected from 20 participants, of whom 6 were female. Participants were 

aged between 19 and 29 (M = 22.75 SD = 3.23). Exclusion criteria included being 

pregnant, history of cardiovascular disease, fainting, seizures, chronic or current pain, 

Reynaud’s disease or diabetes, fractures and open cuts or sores on the feet or calves. 

Participants were required to confirm that they were not currently taking any medica-

tion, with the exception of the contraceptive pill. A full review of the ethics of the ex-

periment was undertaken, and approval was granted by the Liverpool John Moores 

University Research Ethics Committee. All participants were briefed before their ex-

perimental session and were provided with a detailed Participant Information Sheet 

prior to taking part. Full written consent was provided by each participant involved in 

this study. 

3.2 Design 

Participants were exposed to four levels of game difficulty (easy, medium, hard and 

impossible), which were determined during pre-piloting. After each gaming session, 

participants completed the subjective Immersive Experience Questionnaire (IEQ), 

which relates to overall feelings of immersion [15]. The study was designed in this way 

so that these self-scores could be used to label the physiological data for classification. 



5 

This would then enable the accuracy of using physiological signals as an indication of 

immersion to be determined. 

Fig. 1.1 illustrates the data collection protocol that was undertaken. To ensure that 

the results collected during each step of this study were independent, a 90 second base-

line period was established between each condition. The entire protocol was repeated a 

total of four times, to enable participants to play each of the four levels of game diffi-

culty (i.e. easy, medium, hard and impossible). Throughout the course of the experi-

ment, all four levels of the game were played in a randomized order. This ensured that 

the results collected were not influenced by the participant gaining more experience 

with the game on Easy and Medium levels before they then played Hard and Impossible 

levels. As such, the participant’s response to each level of the game is independent of 

their level of skill or their familiarity with the game.  

3.3 Raw Data Collection 

The components, depicted in Fig. 1.2 a – c, were utilized to collect raw physiological 

and neurological data during the experiment. The platform also consisted of compo-

nents to distract (via a computer game) and induce (via a Cold Pressor Stimulus Tank) 

pain (see Fig. 1.2 d – e). 

fNIRS data were used to determine changes relating both to game difficulty and the 

presence of pain. Data was collected using an Artinis™ OxyMon Mk III device, which 

measured cortical activity (see Fig. 1.2 a). A 2x4 cross-channel configuration was used, 

with a total of 2 sources and 8 detectors. This configuration was created on the fNIRS 

cap, which was worn on the participants head. Data was collected from 8 channels in 

total. Four channels were situated at the prefrontal cortex, between Fz and: F1, AFZ, 

F2 and FCz, and the remaining 4 channels were situated at the somatosensory cortex, 

between CPZ and: CP1, Cz, CP2 and Pz. This optode layout is illustrated in Fig. 1.3. 

Source-detector separation was 3cm and source optodes emitted light at 847nm and 

761nm wavelengths. The device was configured to record optical density data at a sam-

pling rate of 10Hz. Data was recorded using the Oxysoft data recording software. 

Zephyr™ BioHarness monitoring system was used to record electrocardiogram (ECG) 

data at a sampling rate of 250 Hz (see Fig. 1.2 b). The BioHarness was worn around 

the torso, underneath the participants clothing. A Shimmer3™ inertial measurement 

unit (IMU) was also used to record accelerometer data at a sampling rate of 512 Hz (see 

Fig. 1.2 c). The Shimmer3™ unit was worn around the participants head on an elasti-

cated band. Care was taken to ensure that the band of the Shimmer3™ unit did not 

disturb the optodes on the fNIRS cap. Accelerometer data was used to influence the 

pre-processing of fNIRS data. 
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Fig. 1.1) The data collection protocol, which was repeated four times per participant to corre-

spond to each level of game difficulty. During each cycle, the same level of game difficulty was 

played for both the Cold Pressor and Game and the Game Only conditions. 1.2) Materials that 

were used to collect raw data during the experimental protocol. (a) fNIRS Equipment (Dancer 

Design), (b) Bioharness™ ECG Sensor, (c) Shimmer™ Accelerometer, (d) Computer game – 

Space Ribbon and (e) Cold Pressor Stimulus Tank. fNIRS Optode Placement. 1.3) Two light 

sources (central), and 8 detectors surrounding the light source, with reference to the nasion and 

inion. (a) Front view. (b) Top view.  

A racing game was used during the experimental sessions as the distraction (see Fig. 

1.2. d). The racing game was a strategy-based game, wherein the goal was to finish the 

race in first position. Participants had the option to achieve a first-place position via a 

number of performance boosters, which could be picked up during gameplay. Partici-

pants could collect rockets, shields and invisibility boosters by driving over them on 

the track. Rockets, an offensive weapon, could be fired by the participant at competing 

vehicles on the track, which would cause the opponent vehicles to be temporarily dis-

rupted. Shields, both an offensive and a defensive weapon, allowed the player to protect 

themselves from weapons being fired by opponent vehicles, and caused any opponent 

vehicle that came into contact with the players vehicle to be temporarily disrupted. In-

visibility boosters were a defensive weapon that enabled the player to drive through 

opponent vehicles without causing collisions.  

Through pilot testing, four set levels of game difficulty were established: easy, me-

dium, hard, and impossible. Factors within the game were changed to create these four 

difficulty levels, including the Artificial Intelligence (AI) of the game, the amount of 

non-playable cars that were also on the track, gravity and race/maneuver speed. Each 

 

(a) 
(b) (c) 

(d) 
(e) 
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factor was represented by a number and were manipulated for each level’s settings. For 

instance, during the easy level, the options chosen were set to the minimum, whilst 

during the impossible level the options were set to the maximum. The options for the 

Medium and Hard levels were set in-between the minimum and maximum and were 

determined via pilot testing. 

Experimental pain was induced via the Cold Pressor Test (CPT) [22] (see Fig. 1.2 

e). Throughout the duration of the experimental session, water was kept at a consistent 

temperature of 2 degrees centigrade and was not warmed by the participant’s foot. Dur-

ing the stages whereby, participants submerged their foot in the CPT and then also 

played the game, they were instructed to remove their foot from the cold pressor stimuli 

tank when they felt that the pain they were experiencing was unbearable. Each game 

condition lasted for 3 minutes, which is consistent with the recommended maximum 

duration of the CPT. Over the course of the experiment, participants alternated the foot 

that was placed in the cold pressor. This was to ensure that repeated immersion of the 

same foot would not have an effect on pain tolerance. Each CPT was timed, which 

provided an objective measure of pain tolerance at each difficulty level. This result was 

kept blind from the participant. Participants played each level of game difficulty with 

and without the induction of experimental pain. The CPT was used to ensure that the 

experience of immersion did have an effect on the experience of pain. 

In total, 690,028 instances of raw fNIRS data, 16,763,628 instances of raw heart rate 

data and 26,177,699 instances of raw accelerometer data were collected; thus totalling 

43,631,355 instances of raw data overall. 

3.4 Data Pre-Processing 

A data pre-processing pipeline has been created, using a variety of filters and algo-

rithms, which were applied to the raw data (see Fig. 2). These filters were applied to 

ensure that the signals, which would be used for classification, were free from artefacts, 

which could affect the classification results.  

 

Fig. 2. Data pre-processing pipeline 
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Firstly, in order to determine activation in the target cortices, the raw Optical Density 

data that were collected via the fNIRS cap were converted into measures of oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (Hbb), using the modified Beer 

Lambert Law (mBLL) [25]. In order to ensure that the data related specifically to the 

condition that the participant was experiencing, and not to unrelated activity within the 

brain, the baseline and condition data were combined prior to the application of the 

modified Beer Lambert Law, before the baseline data was again removed. This ensured 

that the converted Hemoglobin changes reflected only data that was related directly to 

the condition. 

Following this conversion, the fNIRS data was filtered using a 6th Order Chebyshev 

filter, with passband edge frequencies of 0.5 and 0.1 respectively, for high and low pass 

filtering. These filters were applied to reduce noise within the signal that related to heart 

rate and respiration [26], as well as Mayer waves, which occur within the fNIRS signal 

due to changes in arterial pressure [27]. The same filters were also applied to the ECG 

and accelerometer data to reduce noise within these signals.  

The fNIRS data were then treated with two head movement related filters: Acceler-

ation-Based Movement Artefact Reduction Algorithm (AMARA) and Correlation 

Based Signal Improvement (CBSI), which were used to ensure the results represented 

genuine hemodynamic response. Both fNIRS and accelerometer data were firstly pro-

cessed using the Acceleration-Based Movement Artefact Reduction Algorithm 

(AMARA) [28]. Artefacts relating to head movement are commonly found in fNIRS 

signals, which causes a change in blood flow to the brain. These changes can appear to 

represent changes in activation if they are not removed from the signal. AMARA de-

tects periods of movement within an accelerometer signal and then compares these pe-

riods of movement to the fNIRS data. Where it is found that the moving standard devi-

ation (MSD) of the fNIRS signal has changed considerably during the same period of 

time that movement has been detected within the accelerometer signal, these segments 

of fNIRS data are marked as ‘artefact’ segments. Segments where the MSD of both the 

accelerometer and fNIRS data have no significant deviation are marked as ‘acceptable’ 

segments. Reconstruction of artefact segments uses forward and backward baseline ad-

justments and interpolation to reconstruct the entire signal, with the movement artefacts 

corrected [28]. 

A further consequence of head movement artefacts is that they can cause a positive 

correlation between HbO and Hbb [29]. Usually, these signals are negatively correlated, 

as a drop in Hbb is expected when HbO rises, and vice versa [29]. Therefore, if the 

signals illustrate that there isn’t a strong negative correlation between HbO and Hbb, it 

could be an indication that there is remaining noise contained within the signal. There-

fore, in order to correct the correlation between the HbO and Hbb signals, the final 

stage included applying the Correlation Based Signal Improvement (CBSI) algorithm 

to the fNIRS data[30].  

3.5 Experimental Measures and Feature Extraction 

Following pre-processing, additional measurements were calculated from the HbO and 

Hbb data. The first was Total Hemoglobin (HbT), which occurs through addition of the 
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HbO and Hbb signals to provide a signal that details the total cortical activity, as in 

equation (1). The second was Hemoglobin Difference, which is created by finding the 

difference between HbO and Hbb Hemoglobin, as in equation (2). 

 𝐻𝑏𝑇 = 𝐻𝑏𝑂 + 𝐻𝑏𝑏 (1) 

 𝐻𝐷 = 𝐻𝑏0 − 𝐻𝑏𝑏 (2) 

As reported by Xu et al. [31], Hemoglobin Difference can achieve better results than 

HbO, Hbb and HbT when fNIRS data are being used for machine learning classifica-

tions. The creation of these new measurements provided 32 different features: 8 HbO, 

8 Hbb, 8 HbT and 8 Hemoglobin Difference, each relating to the 8 original channels of 

interest. 

In order to determine the heart rate of the participants, ECG data collected from the 

Bioharness was converted into beats per minute (BPM), as depicted in equation (3). 

 𝐵𝑃𝑀 = 60000/𝐼𝐵𝐼(𝑟𝑃𝑒𝑎𝑘𝐸𝐶𝐺(𝑛) − 𝑟𝑃𝑒𝑎𝑘𝐸𝐶𝐺(𝑛 − 1)) (3) 

This process involved calculating the inter-beat interval (IBI), which corresponds to the 

time between consecutive R peaks in an ECG signal, which indicates that the heart has 

beaten. BPM detection was undertaken by identifying the R peaks in the signal and then 

finding the difference in milliseconds between two successive beats and then dividing 

by 60,000 (the number of milliseconds in a minute).  

The data were then separated into 8 second windows, which corresponds to the He-

modynamic Delay that is present in fNIRS data. This occurs when the response to the 

onset of stimuli has a delay of several seconds after the stimuli has been introduced, 

before changes in the signal reflect this [32]. Within each 8 second epoch, standard 

descriptive statistics were extracted from the fNIRS data, including: mean, median, 

range, minimum, maximum and standard deviation. These features were created for 

each of the 32 original measurements discussed above, to create a feature set comprised 

of 192 features in total. These descriptive statistics were also extracted from the BPM 

data, thus totaling 198 features. Following the creation of the feature set, each partici-

pant’s dataset was normalized using a Standardized Z Score [33] and combined into a 

single dataset. It should be noted that two participant’s data were excluded from this 

dataset due to short CPT immersion times, where none of their immersions in any con-

dition exceeded 25 seconds. 

3.6 Data Labelling 

Subjective levels of immersion were gathered via the Immersive Experience Question-

naire (IEQ), which consists of 32 questions that are scored on a 7-point Likert scale 

from 1 (Not at All) to 7 (A Lot). The resulting scores from the IEQ were used as sub-

jective labels for the neurophysiological data. As described above, participants played 

each level of the game (easy, medium, hard and impossible) under two conditions: 1) 

game only and 2) experiencing pain whilst playing the game. The average IEQ score 

was then calculated for each game level, per condition. The data was then labelled such 

that any participant whose score for each level/condition was a) greater than or equal 
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to the mean was labelled ‘immersed’ or b) any score below the mean was labelled ‘not 

immersed’. As a result of this labelling process, Fig. 3 illustrates the frequency of im-

mersed/not immersed participants for each level during the a) game only condition and 

b) game and pain condition. 

 

Fig. 3. a) IEQ distribution of Immersed and Non-Immersed participants during the Game Only 

condition shown as a percentage and b) IEQ distribution of Immersed and Non-Immersed partic-

ipants during the Game and Pain condition shown as a percentage. 

As it can be seen in Fig. 3, the datasets per level, per condition are unbalanced, apart 

from the medium level of the game only condition, whereby the balance is 50/50. As 

such, in order to balance the remaining datasets, the majority classes (i.e. those labelled 

as immersed) were randomly undersampled using the SpreadSubsample function in 

Weka [34] in order to create equally labelled data. 

3.7 Feature Selection 

Feature selection was undertaken using the RELIEFF algorithm [35]. RELIEFF uses a 

k nearest neighbor approach to weight the estimated quality of features. The k value is 

the value that determines the number of nearest neighbors that should be compared to 

each data point. This is done in order to determine the nearest values in the same class 

(hits) and the nearest values in a different class (misses). Each feature is weighted to 

estimate its quality, based on the amount of hits and misses.  

In order to determine how each set of measures (frontal fNIRS sites, central fNIRS 

sites and heart rate) independently performed during classification, these three sets of 

measures were separated into individual datasets. The purpose of this separation was to 

determine the best set of features to use in order to classify immersion. The RELIEFF 

algorithm was then applied independently to the frontal and central fNIRS data. Due to 

the heart rate measures only containing six features, feature selection was not per-

formed over this data. The resulting weights were then ordered, from highest to lowest, 

and plotted on a graph (see Fig. 4). The point in the graph where the “elbow” appears 

indicates the most relevant features and the feature set is cut down at this point. 
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Fig. 4. Example of RELIEFF feature selection of the frontal fNIRS sites. The graph indicates 

that the elbow, where the relevance of the features becomes obsolete, is at 36 features.  

The application of the RELIEFF algorithm determined that a total of 15 Frontal and 12 

Central fNIRS features were relevant for classification. The features that were selected 

can be seen in Table 1. 

Table 1. Features selected for classification determined by the RELIEFF Algorithm 

Frontal Features Weight Central Features Weight 

Fz x AFZ HbT Mean 0.011988036 CPZ x CP2 HbT Mean 0.012807196 

Fz x F1 HbT Mean 0.011664447 CPZ x CP2 HbT Median 0.010977391 

Fz x F1 HbT Max 0.009856833 CPZ x Cz Oxy Max 0.00930525 

Fz x F1 HbT Median 0.00965673 CPZ x Cz Diff Max 0.009305134 

Fz x F1 Oxy Max 0.009499116 CPZ x Cz Deoxy Min 0.009305041 

Fz x F1 Diff Max 0.009498993 CPZ x CP2 Diff Min 0.009290371 

Fz x F1 Deoxy Min 0.009498955 CPZ x CP2 Deoxy Max 0.009290342 

Fz x AFZ HbT Median 0.009402018 CPZ x CP2 Oxy Min 0.009290215 

Fz x F2 HbT Max 0.008972051 CPZ x CP2 HbT Min 0.009095969 

Fz x F2 Oxy Max 0.008418477 CPZ x Cz HbT Mean 0.009075785 

Fz x F2 Diff Max 0.008418435 CPZ x Cz HbT Max 0.008980522 

Fz x F2 Deoxy Min 0.008418274 CPZ x CP1 HbT Max 0.008715578 

Fz x F2 HbT Mean 0.008276955   

Fz x F2 HbT Median 0.008061099   

Fz x FCZ HbT Max 0.007826961   
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4 Results 

The evaluation uses both parametric and non-parametric machine learning classifiers, 

including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and 

Recursive Partitioning (rPart), to classify immersion using the selected features in the 

frontal fNIRS sites, central fNIRS sites and heart rate datasets. These classification al-

gorithms are commonly used in fNIRS studies that involve machine learning [36]. Clas-

sification was carried out using RStudio Version 1.1.414 and the Machine Learning in 

R (MLR) package. The results were validated using k-fold cross validation, where k = 

10. Performance measurements that were calculated included: 

• Accuracy – an overall score of the performance 

• F1 Score – the weighted average of the precision and recall of the classifier 

• Balanced Error Rate (BER) – an average of classification errors that occur in each 

class 

Binary classification was performed for each of the four game levels (Easy, Medium, 

Hard and Impossible), per condition (i.e. 1) Game and Pain and 2) Game Only). For 

each condition, data were labelled as ‘Immersed’ or ‘Not Immersed’ according to the 

average IEQ score per level (see section 3.6). The aim of this classification was to de-

termine whether immersion could be classified from heart rate and fNIRS data inde-

pendently, and to identify which type of data was more accurately classified. A com-

bined dataset (fNIRS and heart rate) was also classified, to identify whether this would 

improve the classification results. Classification was carried out over Game Only, and 

Game and Pain conditions independently, to examine the effect of the experience of 

pain on the classification of immersion.  

Each classifier was utilized independently using only the 1) heart rate features, 2) 

frontal site features, 3) central site features and 4) a merger of 1 – 3 (i.e. heart rate, 

frontal and central site features together). The purpose of this was to evaluate each set 

of features independently to establish the set of features that provided the best results. 

Data were separated into four difficulty levels for the classification of immersion, to 

determine whether the level of difficulty would have an effect on the accuracy of the 

classification. Data were also separated by Game and Pain and Game Only conditions, 

to determine whether the inclusion of the CPT has an effect on the accuracy of the 

classifier. The results of the Heart Rate analysis can be seen in Table 2. 

Table 2. Heart rate classification results per condition/level 

  Game and Pain Game Only 

Condition 
Performance 

Measure 
LDA SVM rPart LDA SVM rPart 

Easy 

Accuracy 85.1% 85.6% 84% 86% 86.6% 85.6% 

BER 49.6% 50% 50.8% 48% 50% 45.6% 

F1 91.7% 92.1% 91.2% 92.3% 92.6% 92% 

Medium Accuracy 80.7% 79.8% 71.8% 70.6% 68.8% 61.7% 
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BER 50% 50.5% 53.9% 42.6% 45.1% 44.8% 

F1 89.07% 88.58% 83.18% 80.9% 80.2% 71.6% 

Hard 

Accuracy 77.8% 77.8% 68.6% 74.9% 77.4% 69.4% 

BER 48.6% 50% 50.7% 44.2% 50% 50% 

F1 87.1% 87.4% 80.5% 85.1% 86% 80.4% 

Impossible 

Accuracy 59.5% 58.9% 62% 56% 58.4% 49% 

BER 45.5% 47.2% 39.8% 49.5% 50.5% 52% 

F1 70.4% 72% 68.2% 68.7% 73% 56.8% 

 

The results in Table 2 report maximum accuracies during both Game and Pain and 

Game Only conditions during Easy, Medium and Hard games of 86.6%, 80.7% and 

77.8%, respectively, whilst the Impossible condition provided adequate results of 62%. 

The lowest error rates for each level were observed during the Game Only condition, 

with 45.6% (Easy), 42.6% (Medium) and 44.2% (Hard), whilst the lowest overall BER 

was observed during the Impossible level at 39.8%. The results illustrate that LDA and 

SVM outperformed rPart in most cases, with the highest F1 score (92.6%) being ob-

served using SVM during the Game Only/Easy condition. This illustrates that when the 

game was relatively simple, a linear model using heart rate only features was adequate 

to distinguish immersion. The results indicate that comparable levels of classification 

accuracy can be found between the Game and Pain and Game Only conditions of the 

same difficulty levels. Overall, maximum classification accuracy of 86.6% and BER of 

92.6% was found in the Game Only/Easy condition, using SVMs. To evaluate whether 

these results can be improved upon using fNIRS, the results of the frontal fNIRS sites 

can be seen in Table 3.  

Table 3. Frontal fNIRS classification results per condition/level 

  Game and Pain Game Only 

Condition 
Performance 

Measure 
LDA SVM rPart LDA SVM rPart 

Easy 

Accuracy 85.6% 85.6% 76.8% 86.1% 86.6% 82.1% 

BER 50% 50% 47.9% 48.9% 50% 52.7% 

F1 92.1% 92.2% 86.6% 92.4% 92.7% 90% 

Medium 

Accuracy 80.7% 80.7% 77.2% 67.6% 68% 54% 

BER 50% 50% 46.7% 50.5% 50% 52.3% 

F1 89.2% 89.1% 86.5% 80.2% 80.8% 65% 

Hard 

Accuracy 77.1% 78% 63.8% 77% 77.4% 69% 

BER 50.5% 45% 53.9% 50.3% 50% 46.7% 

F1 86.9% 87.2% 76.6% 86.8% 87% 79.7% 

Impossible 
Accuracy 56.1% 56.1% 63.8% 53.8% 57.3% 54.8% 

BER 52.5% 51% 38% 54% 51.4% 46.7% 
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F1 71.3% 70.8% 70% 69.4% 72.3% 61% 

 

Table 3 illustrates that using the frontal fNIRS sites yielded comparable results as the 

Heart Rate results seen in Table 2. Maximum accuracies of 86.6% (Easy), 80.7% (Me-

dium), 78% (Hard) and 63.8% (Impossible) were reported for each level, across both 

Game and Pain and Game Only conditions. The lowest overall BER (38%) was ob-

served during the Game and Pain/Impossible condition using rPart. The highest overall 

accuracy (86.6%) and F1 score (92.7%) were achieved using an SVM classification 

during the Easy/Game Only condition, which was similar to the HR results. These re-

sults illustrate that the classifiers seem to perform best on the Easy level, using the game 

on its own and when pain is not present. However, when the game increases in com-

plexity, from the Medium – Impossible levels, the presence of pain does not affect the 

results and produces higher accuracies. To evaluate whether central fNIRS sites can 

provide further improvement, the results of the central fNIRS sites can be seen in Table 

4. 

Table 4. Central fNIRS classification results per condition/level 

  Game and Pain Game Only 

Condition 
Performance 

Measure 
LDA SVM rPart LDA SVM rPart 

Easy 

Accuracy 85.7% 85.6% 88.2% 86.8% 86.7% 87.1% 

BER 50% 50% 27.7% 40% 50% 33.1% 

F1 92% 92.1% 93% 92.7% 92.7% 92.7% 

Medium 

Accuracy 83.7% 79.3% 96.9% 83.3% 80.2% 90.3% 

BER 20.9% 40.8% 7.8% 19.7% 25.1% 11% 

F1 89.3% 87.8% 98.1% 88% 86.1% 92.7% 

Hard 

Accuracy 77.8% 77.9% 99.2% 74.8% 77.5% 95.8% 

BER 50% 50% 1.3% 50.9% 50% 7.5% 

F1 87.3% 87.4% 99.4% 85.3% 87% 97.2% 

Impossible 

Accuracy 54.2% 58% 95.3% 60.1% 62% 88.9% 

BER 49% 50.3% 5.7% 43.3% 44% 11.5% 

F1 66.8% 72.3% 96.2% 68.4% 72.7% 90.5% 

 

The results presented in Table 4 illustrate that using the central fNIRS sites are an im-

provement to the results achieved using the frontal sites, especially when an rPart clas-

sification is implemented. Maximum accuracies of 88.2% (Easy), 96.9% (Medium), 

99.2% (Hard) and 95.3% (Impossible) were reported for each level, across both Game 

and Pain and Game Only conditions. The highest overall accuracy (99.2%) and F1 score 

(99.4%) and lowest BER (1.3%) were achieved using the rPart classifier during the 

Hard/Game and Pain condition. In contrast with previous results, the results from the 

rPart learner are consistently better than that of LDA and SVM for all measures. We 
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were also interested to compare how a combination of the three separate datasets would 

perform. The results from this combined dataset can be seen in Table 5. 

Table 5. Combined dataset (fNIRS and heart rate) classification results per condition/level 

  Game and Pain Game Only 

Condition 
Performance 

Measure 
LDA SVM rPart LDA SVM rPart 

Easy 

Accuracy 83.5% 85.7% 76.3% 83.1% 86.6% 80.6% 

BER 51.3% 50% 50.8% 47.1% 50% 52.2% 

F1 90.7% 92.2% 86.2% 90.5% 92.7% 88.8% 

Medium 

Accuracy 78.5% 80.7% 72% 65.4% 68.4% 64.1% 

BER 51.3% 50% 51.3% 48.8% 45.8% 43.4% 

F1 87.8% 89% 83.2% 77.4% 79.9% 73.9% 

Hard 

Accuracy 73.2% 77.9% 65.5% 74% 77.4% 74% 

BER 52.9% 50% 49.8% 50.1% 50% 40.6% 

F1 84.4% 87.4% 77.5% 84.4% 87.1% 83.3% 

Impossible 

Accuracy 51.7% 59.6% 61% 47% 57.6% 52.5% 

BER 52.5% 49.2% 40.5% 58.4% 51.2% 50.2% 

F1 63.7% 73.5% 65.6% 61.2% 72.1% 59.9% 

 

As the results in Table 5 illustrate that the combined dataset does not outperform any 

individual dataset. Maximum accuracies of 86.6% (Easy), 80.7% (Medium), 77.9% 

(Hard) and 61% (Impossible) were reported for each level, across both Game and Pain 

and Game Only conditions. The lowest overall BER (40.5%) was observed during the 

Game and Pain/Impossible condition using rPart. The highest overall accuracy (86.6%) 

during the Easy/Game Only condition is comparable to the HR (Table 2) and frontal 

(Table 3) results. Overall, the results presented in Table 5 indicate that there is no ben-

efit of using the combined data set over the individual datasets. To summarize, the 

highest accuracy (99.2%) and F1 (99.4%) and lowest BER (1.3%) were achieved using 

the central dataset, during the Hard/Game and Pain condition and using the rPart clas-

sifier. As such, central fNIRS sites, together with rPart, appears to be the most appro-

priate set of data and classifier to use to detect immersion in the presence of pain. 

5 Discussion 

It has been established that a computer game is an active distraction task capable of 

increasing pain tolerance. The rationale of this study was to use fNIRS and heart rate 

data to differentiate between immersive and non-immersive conditions. Our approach 

was undertaken in distinct phases, which were utilized to assess the relative contribu-

tion of variables derived from fNIRS (frontal and central sites) and heart rate data. Fea-

ture selection was undertaken using the RELIEFF algorithm, which indicated that HbT 
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measures were consistently well represented in both the frontal and central sites. It was 

interesting to note that of the 27 selected features, both from frontal and central sites, 

15 of these features (55.5%) were descriptive statistics gathered from the HbT signal. 

It is also interesting that statistics associated with variation (e.g. min, max) are repre-

sented more than measures relating to central tendency (e.g. mean, median). Feature 

selection has enabled us to determine that measures associated with variation, gathered 

from the HbT signal, would be the best features derived from fNIRS to utilize for fur-

ther work. The same pattern, i.e. sensitivity of total hemoglobin in the frontal cortices 

to the cold pressor test, was observed in earlier studies [3], [5]. Feature selection also 

indicates that channels Fz x F1, Fz x AFZ, Fz x FCZ, CPZ x CP1, CPZ x Cz and CPZ 

x CP2 contain the most relevant features. These findings are beneficial for the creation 

of a real-time system, as the run-time of the real-time data analysis protocol is vital. 

When a real-time protocol is considered, the removal of channels and measures which 

did not achieve high weights in this study could improve the run-time of the protocol 

and enable a more efficient real-time classification.   

The classification methodology involved testing heart rate, fNIRS at frontal and cen-

tral sites independently and then together using LDA, SVM and rPart learners (Table 2 

- Table 5). The results achieved indicated that the classification accuracies were lowest 

during the Impossible condition, which could be due to player frustration. However, 

they may still have been intent on winning the game, and therefore still exhibiting focus 

towards the task. This indicates that the subjective measures that were gathered are not 

effectively measuring immersion at the same rate as the objective measures. However, 

as a real time adaptive game would still need training data, it may be better to label the 

data using objective measures rather than subjective – the use of conative probing [37] 

rather than a subjective score would be one example of this. 

The results indicate that the effect of pain does not significantly affect the classifi-

cation of immersion and that the heart rate features produced comparable results to the 

frontal fNIRS sites but did not outperform the central fNIRS sites. This is a positive 

result for our study, as it is important to be able to classify immersion in the presence 

of pain. The results of the HR classification in comparison to fNIRS classification in-

dicate that, although HR can be classified to the same level as frontal fNIRS sites, cen-

tral fNIRS sites still provide a more accurate classification. The efficacy of fNIRS clas-

sification indicates that the application of fNIRS technology is justifiable even consid-

ering the more advanced data collection protocol. Although all participants were sub-

jected to the same pain protocol, some participants may have a naturally lower or higher 

pain tolerance, and therefore feel more or less pain than anticipated at various stages of 

the study. This means that the signals in the brain relating to pain could have an effect 

on the classification when a real-time system is used, depending on the level of pain 

that a participant is feeling. However, as the results between Game and Pain and Game 

Only conditions were comparable, we hypothesize that the experience of pain should 

not affect the accuracy of a classification in a real-time system.  

The results have important implications for the future development of a neuroadap-

tive game. In the first instance, the feature selection process identified the metric (HbT) 

and specific sites that were most responsible for distinguishing levels of game demand. 

By focusing on these signals and measures in the design of a neuroadaptive game, it is 
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possible to reduce processing time required for classification during a real-time proto-

col. Using these results, we intend to adapt the methods that have been used this paper 

into a real-time system. We believe that adapting a game in this way would enable us 

to create a more immersive game experience, and therefore reduce the perception of 

pain. 

6 Conclusion and Future Work 

The purpose of this work was to identify the foundations of a real-time neuroadaptive 

system to distract people from painful experiences. The results achieved within this 

paper have enabled us to identify relevant fNIRS sites and measures that could be used 

in such a system. A maximum classification accuracy of 99.2% was achieved using the 

rPart classifier for the detection of immersion in the presence of pain.  

Alongside the results shown, we accept the limitations of the current study. For in-

stance, short-distance electrodes were not used during the fNIRS measurements. Short 

distance electrodes are used to record, and later reduce, the amount of noise within a 

signal that is not related to neurovascular coupling. Signals such as this are recorded 

from the extracerebral layers, rather than the cerebral tissue layer, and are task-evoked 

but not related to neurovascular coupling [36]. Further issues in this study may have 

arisen due to systemic effects contained within the fNIRS signal that have not been 

removed [29]. Although filters were applied to the fNIRS signal to reduce noise relating 

to heart rate, respiration and blood pressure, we cannot be certain that all of these fea-

tures were removed from the signal. In future studies, steps could be taken to reduce 

the presence of systemic effects such as the use of heart rate, respiration and blood 

pressure signals by building personalized filters to be applied to each fNIRS signal [38]. 

We believe that the future use of personalized filters and short-distance channels could 

improve on the results that have been gathered in this study. 
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