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Signal Processing of Multimodal Mobile 
Lifelogging Data towards Detecting Stress in 

Real-World Driving 
Chelsea Dobbins, Member, IEEE, Stephen Fairclough 

Abstract— Stress is a negative emotion that is part of everyday life. However, frequent episodes or prolonged periods of stress 
can be detrimental to long-term health. Nevertheless, developing self-awareness is an important aspect of fostering effective ways 
to self-regulate these experiences. Mobile lifelogging systems provide an ideal platform to support self-regulation of stress by 
raising awareness of negative emotional states via continuous recording of psychophysiological and behavioural data. However, 
obtaining meaningful information from large volumes of raw data represents a significant challenge because these data must be 
accurately quantified and processed before stress can be detected. This work describes a set of algorithms designed to process 
multiple streams of lifelogging data for stress detection in the context of real world driving. Two data collection exercises have 
been performed where multimodal data, including raw cardiovascular activity and driving information, were collected from twenty-
one people during daily commuter journeys. Our approach enabled us to 1) pre-process raw physiological data to calculate valid 
measures of heart rate variability, a significant marker of stress, 2) identify/correct artefacts in the raw physiological data and 3) 
provide a comparison between several classifiers for detecting stress. Results were positive and ensemble classification models 
provided a maximum accuracy of 86.9% for binary detection of stress in the real-world. 

Index Terms— Mobile Computing, Pervasive Computing, Signal Processing, Physiological Measures, Lifelogging 
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1 INTRODUCTION
ifelogging is a form of pervasive computing that is con-
cerned with automatically capturing a digital record of 

an individual’s life [1]. This idea was first proposed in 1945 
by Vannevar Bush, with the notion of the Memex [2]. Since 
this time, the value of automatically capturing and access-
ing daily experiences has been appreciated [3]. Earlier 
work in this domain focused on using wearable cameras to 
create lifelogging records for self-reflection [4, 5]. However, 
advancements in technology have enabled a range of sen-
sors to be embedded in smartphones, including cameras, 
accelerometers, GPS, heart rate sensors, and pedometers, 
which can be utilized to automatically capture data to sup-
plement lifelogs [6]. Furthermore, the wearable device 
market is capitalizing on these trends by developing 
smaller, more powerful and affordable devices that house 
a multitude of similar sensors.  

In order to create truly insightful lifelogs that feed the 
process of self-reflection, the inclusion of those objective 
physiological changes that underpin our experiences is vi-
tal. As such, leveraging the power of our mobile/wearable 
devices is essential to access a variety of physiological data, 
which can be utilized to recognize emotional states [7, 8]. 
The detection of negative emotions, such as anxiety, stress, 
sadness and anger, is particularly important as frequent ex-
perience of these emotions is associated with inflammatory 
processes in the cardiovascular system [9]. This process of 

inflammation may play a significant role in the develop-
ment of coronary heart disease (CHD) [9, 10]. CHD is the 
leading cause of death worldwide; however, stress man-
agement, via adaptive coping of negative emotions, can re-
duce the risk of developing CHD [11–13].  

Nevertheless, whilst capturing multimodal data from 
mobile devices is relatively straightforward, the derivation 
of meaningful information from these sources presents sig-
nificant challenges. In order to be truly insightful, success-
ful lifelogging systems must integrate multiple streams of 
data together. This would allow the system to intelligently 
account for the context of physiological measures and their 
association with the current situation [14]. Context is vital 
for any lifelogging system and can be defined as “the state 
of knowledge of external and internal entities that causes a 
change in the user’s situation, thus necessitating a different in-
terpretation of the data in hand” [14]. For example, high heart 
rate correlated to a set of location coordinates and supple-
mented by a photograph of a red traffic light could indicate 
an increased physiological response to the experience of 
journey impedance. In this case, context has been derived 
from the environment (i.e. from the GPS position and 
photo), which has then been correlated with the physiolog-
ical parameters to establish the explanatory framework for 
the latter. However, the practical achievement of this infer-
ential process is far from straightforward. Collecting and 
processing covert changes in physiology requires sophisti-
cated digital signal processing techniques and algorithms. 
Additionally, multiple streams of data (both driving and 
physiological) must also be synchronized onto a common 
timeline. This is a significant problem as devices record 
data at different frequencies. 

This work presents our method of processing 

———————————————— 
• C. Dobbins is with the Department of Computer Science, Liverpool John 

Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom. E-
mail: C.M.Dobbins@ljmu.ac.uk 

• S. Fairclough is with the School of Natural Sciences and Psychology, Liver-
pool John Moores University, Byrom Street, Liverpool, L3 3AF, United 
Kingdom. E-mail: S.Fairclough@ljmu.ac.uk 

 

L 



2  

 

multimodal lifelogging data to detect stress within the con-
text of real-life driving and forms part of the MultiModal 
Lifelogging Project (MMLP). This scenario has been chosen 
because it is a common activity that often includes natu-
rally-occurring episodes of stress. Driving also provides a 
relatively sedentary and stable environment in which to 
collect sensor data, as participants remain in a seated posi-
tion during this activity. 

Twenty-one participants took part in two data collection 
exercises, which required them to collect a variety of life-
logging data on their daily driving commutes to and from 
work. Their data has been subjected to our data processing 
pipeline and evaluated using several classification algo-
rithms designed to identify low and high periods of stress. 
As such, the work addresses the technical challenges of 
processing a diverse set of signals related to human behav-
iour on a common time/location basis in order to classify 
psychophysiological responses. 

The remainder of this paper is organized as follows. Sec-
tion two discusses related work in the area of emotion de-
tection. Section three presents our methodology for pre-
processing and extracting features from raw lifelogging 
data. Section four illustrates the results that have been ob-
tained from classifying our pre-processed data in order to 
detect stress before providing a discussion of these results 
in section five. Concluding remarks and directions for fu-
ture work are then discussed in section six. 

2 RELATED WORK 
The vision of lifelogging technologies is to, “allow us to 
capture everything that ever happened to us, to record 
every event we ever experienced and to save every bit of 
information we have ever touched” [15]. The sophistica-
tion and pervasiveness of mobile and wearable devices has 
provided an opportunity for this vision to become a reality 
[16]. Using such devices, a wide range of data can be col-
lected continuously and unobtrusively, enabling the log-
ging of vast amounts of personal data. Extending this area 
into stress detection via biosensing is an ongoing and ex-
citing research area that promises to deliver increasingly 
accurate results. Contextual data, such as photos/location, 
which are typically captured using lifelogging technolo-
gies, can be cross-referenced with physiological data in or-
der to identify sources of covert physiological changes. 

Measuring stress within drivers usually occurs via sim-
ulators [17–19] as there is considerable difficulty, effort and 
risk involved in collecting data in the natural environment 
[20]. For instance, Katsis et al. [17] utilized facial electro-
myography (fEMGs), electrocardiogram (ECG), respira-
tion and skin conductance within support vector machines 
(SVMs) and adaptive neuro-fuzzy inference system (AN-
FIS) to detect high stress, low stress, disappointment, and 
euphoria within a simulated car racing environment. The 
SVM achieved an overall accuracy of 79%, whilst the AN-
FIS model achieved 77%. Similarly, Jansen et al. [18] uti-
lised ECG to measure heart rate in order to detect both in-
cidental and integral anger in participants who drove for 
approximately 12 minutes in a driving simulator. The ex-
perience included 9 hazard events (e.g., car swerving into 

their lane, deer in the road) and afterwards participants 
rated their affective states using a subjective questionnaire. 
The results demonstrated that physiological measure-
ments were a valid measurement to use for identifying 
both incidental and integral affect. However, as these were 
simulated environments the experimenters could precisely 
control the road conditions and stability of the sensors. 

For the majority of studies who have conducted experi-
ments outside of a laboratory it has been noted that partic-
ipants often have to follow strict supervision and drive 
pre-planned routes, for a limited time [20]. For instance, 
Singh et al. [21] have utilised Photoplethysmogram (PPG), 
Galvanic Skin Response (GSR) and respiration data within 
a Cascade Forward Neural Network (CASFNN). Data was 
collected from participants as they drove around three pre-
planned driving scenarios. The CASFNN achieved an 
overall accuracy of 80%, using 25 hidden neurons and a 25 
second window. However, Vhaduri et al.’s [20] study is 
similar to this work whereby continuous data has been col-
lected from uncontrolled and unscripted driving episodes 
over one week. Their work has developed the GStress 
model that estimates driver’s stress using only smartphone 
location (GPS) traces. The model was trained using a Gen-
eralized Linear Mixed Model (GLMM) and obtained a 
Pearson Correlation of 0.722 for predicting stress using 
only GPS.  

Utilizing measures of heart rate variability is an accepta-
ble method to quantify stress [22]. However, coupling 
these measures with lifelogging technologies can provide 
insight into those psychological processes, which we may 
not be consciously aware of. However, in order to advance 
these fields, conducting experiments outside of the lab and 
in the field, is an essential step in order to assess the viabil-
ity of the approach in everyday life. 

3 MATERIALS AND METHODS 
Our approach capitalizes on the advancements and avail-
ability of smaller and more powerful ambulatory sensors 
that has enabled us to: 

1 Collect instances of raw lifelogging data within 
real-world driving. These data have been collected 
from two categories: physiological (wearable) and 
driving (mobile) sensor data. Physiological data in-
cludes raw electrocardiogram (ECG) and photople-
thysmogram (PPG). These signals have been used 
to calculate heart rate, time and frequency-domain 
measures of heart rate variability (HRV) and pulse 
transit time (PTT). Driving data includes speed of 
the vehicle, location, and first-person photographs 
of the environment. 

2 Pre-Process the physiological sensor data to filter 
noise, calculate various measures, extract features 
and synchronize with the driving data 

3 Detect stress from the synchronized and processed 
lifelogging data with a high degree of accuracy 

However, in order to detect stress, a data processing 
pipeline is required (see Fig. 1.).  



 

 

 
Fig. 1. Data processing pipeline that has been developed to process 
raw sensor and mobile lifelogging data in order to detect stress. 

This pipeline has been developed to pre-process and ex-
tract features from the collected raw lifelogging data. The 
remainder of this paper describes this pipeline in more de-
tail. 

3.1 Raw Data Collection 
Two data collection exercises (DCE) have been undertaken 
to collect a variety of real-life lifelogging data from partic-
ipants on their daily driving commutes to and from their 
place of work. 

3.1.1 Participants 
The data collection exercises included a total of twenty-one 
participants – thirteen females and eight males, with an 
age range from 25 to 57 (mean = 40.86, SD = 11.28). Partici-
pants did not have any history of heart disease and were 
not currently taking any medication that could influence 
cardiovascular activity. The University Ethical Committee 
has approved all procedures for participant recruitment 
and data collection prior to commencement of these stud-
ies. 

3.1.2 Data Collection Exercise 
Raw data was collected using our mobile sensor platform 
(see Fig. 2) twice a day from participants during their nor-
mal driving journeys to and from work, over a period of 
one week. The protocol included driving for a minimum of 
10 minutes (continuously) per journey, driving the same 
route to/from work at approximately the same time for 
each journey, being alone in the car (i.e. no passengers) and 
not listening to music. The journey’s ranged from 10:44 
minutes to 01:48:30 hours (mean = 34:07 min, SD = 15:52 
min). 

This mobile sensor platform setup included two weara-
ble Shimmer3™ sensors, which captured both raw electro-
cardiography (ECG), via a five-lead ECG unit, and photo-
plethysmogram (PPG) signals, via an optical pulse ear-clip. 
PPG can be obtained from several areas on the body, in-
cluding the earlobe and fingertip. The earlobe was chosen 
because this area provided a stable site for signal collection 
as opposed to the fingertip, which is highly susceptible to 
motion artefacts [23], particularly during the driving task. 

 
Fig. 2. Subjects wore a Shimmer3 electrocardiogram (ECG) Unit on 
the chest and clipped a photoplethysmogram (PPG) Optical Pulse 
Ear-Clip to their ear lobe. An accelerometer was placed in a flat posi-
tion in the car during DCE A. During DCE B, a smartphone was placed 
in a holder with the rear camera facing out of the front windshield. 

During DCE A, raw acceleration data was collected via 
a Shimmer3™ accelerometer unit, which was affixed in a 
flat position in the car. However, during DCE B the range 
of driving data that was collected increased to include 
more contextual information, including photographs, loca-
tion and speed, which were captured using a custom-built 
Android application running on a Samsung™ Galaxy 
S5/S6 smartphone. Photographs were captured every 30 
seconds. A mobile phone holder was also provided to place 
the phone into so that photographs could be taken out of 
the front windshield. 

The Shimmer3™ sensors were configured at a sample 
rate of 512 Hz. This sampling rate was selected as it was 
considered to be a suitable frequency at which to obtain a 
signal that did not suffer from jitter [24]. Data was stored 
on the internal micro SD card of each device. 

Before commencement of the DCE’s, participants were 
briefed and provided with a description of the task and 
had a demonstration with the equipment. A total of almost 
106 hours (525,697,711 instances) of raw lifelogging data 
have been collected across both DCE’s. 

3.2 Data Pre-Processing 
Collecting lifelogging information produces an extraordi-
nary amount of raw data. In particular, physiological data 
collected in the field is often susceptible to noise and data 
loss [25]. For example, the quality of contact that occurs 
through attaching adhesive electrodes to the skin, can de-
cay over time and even limited physical movement can 
distort the signal. Therefore, these data must be pre-pro-
cessed before meaningful markers of stress can be ex-
tracted. In the example below, these data were analysed us-
ing MATLAB vR2016a. 

3.2.1 Filtering 
A variety of filtering techniques have been utilized to re-
move noise and baseline wander. The raw ECG data has 
been filtered using a Chebyshev Type I second order high 
pass and lowpass filter, with a cut off frequency between 
0.5 Hz and 200 Hz and a passband ripple of 1 dB [26]. The 
raw PPG data has been filtered using a Chebyshev Type I 
Lowpass filter, with a passband frequency of 5 Hz and a 
passband ripple of 1 dB [27]. Once the data were filtered, 
the next step required heart rate measurements to be cal-
culated from the data.  
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During DCE A, the acceleration signals were filtered us-
ing a Butterworth lowpass filter, with a cut-off frequency 
of 30 Hz. The signal has also been converted from meters 
per second squared (m/s2) into velocity (m/s) using the 
methods described in [28]. 

3.2.2 Calculating Physiological Measurements 
Raw ECG signals record the electrical activity of the heart. 
The beats of the heart are identified from waves known as 
the QRS complex [29]. The length of time between consec-
utive R waves (or beats) is known as the Inter-Beat Interval 
(IBI). Once a heartbeat occurs, blood flows to different ar-
eas of the body and reaches a peak before it progressively 
decreases [30]. However, a raw PPG signal records the rate 
of blood flow, which occurs after a heartbeat, as two types 
of peaks – systolic and diastolic. We were interested in the 
systolic Peak-to-Peak Interval (PPI), as these are the maxi-
mum peaks within the PPG signal. In order to correctly de-
tect stress, accurate detection of the IBI and PPI is essential 
[31]. In this instance, physiological measurements, includ-
ing Inter-Beat Interval (IBI) from the ECG signal and the 
Peak-to-Peak Interval (PPI) from the PPG data, were calcu-
lated from the filtered data. However, in order to calculate 
the IBI and PPI, peaks within both signals must first be de-
tected. 

The ECG and PPG data were first segmented using 30-
second non-overlapping windows. For each window, the 
location of the peaks within the ECG and PPG signals were 
detected. Once the location of the peaks was identified, the 
IBI and PPI intervals were calculated. This calculation was 
achieved using the equation in (1). Here, x is the location 
of the peaks, which was stored as a vector, l is the length of 
the signal and f is the sample frequency. 

 
𝑖𝑏𝑖/𝑝𝑝𝑖 = (𝑥(𝑙) − 𝑥(𝑙 − 1)) ÷ 𝑓 × 1000              (1) 

 
This equation calculated the difference between adjoin-

ing peak locations and then converted this into units of 
time (milliseconds). Once the IBI and PPI measurements 
were calculated, the next step required artefacts within the 
signal to be identified and corrected. 

3.2.3 Artefact Identification and Correction 
When undertaking HRV analysis, artefacts can signifi-
cantly influence the metrics used to express variability in 
the heart rate time series [32]. Therefore, it is very im-
portant to identify and correct these artefacts. Having a 
continuous signal is another important issue for HRV anal-
ysis hence there is no option to simply discard these arte-
facts from the record, as this strategy would produce inac-
curate metrics [32]. Interpolation is a widely used method 
to overcome this problem, which corrects artefacts and sus-
tains the integrity of the time series. Our algorithm identi-
fied and corrected two types of artefacts, 1) missing peaks 
and 2) false positives. Fig. 3 illustrates an example of the 
peaks that have been detected in an ECG signal, the IBI in-
tervals and an example of an identified artefact (this pro-
cess was also repeated for the PPG signal to generate PPI 
intervals). 

 
Fig. 3. Example of detected peaks (q), intervals and artefact in ECG 
signal. 

3.2.3.1 Identifying Missing Peaks and False Positives 
Algorithm 1 and Fig. 4 presents the process for identifying 
missing and false positive peaks. The algorithm used the 
calculated IBI/PPIs from section 3.2.2 (IBI) and returned 
two new binary vectors indicating the position of any 1) 
missed peaks (missedPeaks) and 2) false positive peaks 
(fpPeaks) that have been detected in the windowed signal.  

The algorithm looped through each row in the win-
dowed IBI signal (line 1). For each row, if the IBI value was 
greater than 1.5 of the mean (line 2) this illustrates a signif-
icant deviation from normality and so the detection algo-
rithm identifies that a peak has been missed. In this in-
stance, the corresponding row in the missedPeaks vector 
was flagged as 0 (line 3). In the case of identifying false 
positives, for each row in the windowed IBI signal, if the 
IBI value was less than 0.5 of the mean (line 7) the detection 
algorithm identifies that a false positive has occurred. In 
this instance, the corresponding row in the fpPeaks vector 
was flagged as 0 (line 8). In both instances, if a peak was 
acceptable then this was flagged with a 1 (lines 5 and 10). 
Since IBI follows a pronounced normal distribution, these 
settings were chosen as a method to identify missed peaks 
and false positives that has been achieved by looking at the 
deviations from the normal range of values that is specific 
to each participant during each drive. This process was re-
peated for the PPG data. 

 

 
Fig. 4. Flowchart of Algorithm 1 that has been developed to identify 
missed peaks and false positives 



 

 

 

3.2.3.2 Correcting Missed Peaks and False Positives 
Once the missing and false positives peaks had been 
flagged, Algorithm 2 then corrects these instances by inter-
polating new peaks and IBI/PPIs (see Fig. 5).  

Algorithm 2 uses the flagged missedPeaks and fpPeaks 
vectors from Algorithm 1, to obtain all flagged instances 
that were associated with missing and/or false positives 
peaks. It then established the number of flagged peaks that 
occurred and inserted an empty row underneath each 
flagged instance.  

 

 
Fig. 5. Algorithm 2 that has been developed to correct missed peaks 
and false positives 

The first item that needed to be corrected were the peaks 
in the signal. Therefore, the next steps were to get the loca-
tion of the flagged peaks (targetIndex) and loop through 
each row in the targetIndex. For each flagged peak in the 
targetIndex, another index was then created that consisted 
of the locations of acceptable peaks (acceptablePeaks) that 
occurred prior to the flagged peak. A new peak (np) was 
then calculated using equation 2. 

 
𝑛𝑝 = 𝑓𝑝 − (𝑥̅	(𝑖𝑏𝑖3))	                    (2) 

 
This equation uses the flagged peak, fp, and the average 

of the previous five acceptable IBI values, ibi, that occurred 
before the flagged peak. However, if the acceptable IBIs oc-
curred at the beginning of the signal and contained less 
than five values (i.e. acceptablePeaks < 5) then ibi contained 
the first n < 5 acceptable IBIs that occurred at the start of 
the signal. In all other instances, ibi was based on the pre-
vious five acceptable IBIs that occurred prior to the flagged 
peak. Once the new peak was created, a new correspond-
ing IBI (nIBI) value was also created using equation 3. 

 
𝑛𝐼𝐵𝐼 = 𝑛𝑝 − 𝑝(6789)        (3) 

 
This equation uses the newly created peak (np) from 

equation 2 and the previous acceptable peak (p) that oc-
curred before the flagged peak, fp. The new peak (np) and 
corresponding IBI (nIBI) were then inserted into the empty 
row underneath the flagged peak and the flagged IBI was 
removed. The algorithm terminated once all flagged IBIs 
in the targetIndex were processed and flagged peaks re-
moved. 

Using TABLE 1 as an example of this process, a missed 
peak has been flagged at row 7 and so a new row was in-
serted underneath (row 8). In order to correct this, a new 
peak (np) was first calculated using equation 2, whereby 
the average IBI of the previous 5 acceptable IBI’s that oc-
curred before the missed peak (cell C2 – C6) were subtracted 
from the identified missed peak (cell B7) to generate the 
new peak (cell B8). 

 
TABLE 1 

EXAMPLE OF CORRECTING MISSED PEAKS AND IBIS IN 
ECG/PPG SIGNAL 

 A B C D E 

 R Peak Sam-
ple Location 

R Peak 
Sample 

Time (ms) 
IBI (ms) 

Missed 
Peak 

False 
Posi-
tive 

1 121 234.38 0 1 1 
2 433 843.75 609.38 1 1 
3 735 1433.59 589.84 1 1 
4 1049 2046.88 613.28 1 1 
5 1348 2630.86 583.98 1 1 
6 1662 3244.14 613.28 1 1 
7 2248 4388.67 1144.53 0 1 
8  3786.72 542.58   

 
 
A new corresponding IBI (nIBI) was also created (cell C8) 

Algorithm 1. Identify missing peaks and false positives in 
ECG/PPG signals 

 
Data: IBI 
Result: missedPeaks and fpPeaks 
 
1: for each row (j) in IBI 
2:    if IBI(j) > (mean_ IBI + (mean_ IBI /2)) 
3:        missedPeaks(j) = 0 
4:    else 
5:        missedPeaks(j) = 1 
6:    end if 
7:    if IBI(j) < (mean_ IBI /2) 
8:        fpPeaks (j) = 0 
9:    else 
10:        fpPeaks (j) = 1 
11:    end if 
12: end for 
13: return missedPeaks, fpPeaks 
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by subtracting the previous acceptable peak that occurred 
before the flagged peak (cell B6) away from the newly cre-
ated peak (cell B8). Once all flagged items were corrected 
the flagged rows were removed (i.e. row seven) and so the 
updated matrix now does not contain any missed peaks 
and/or false positives. This process occurred for all 
flagged ECG and PPG peaks. Once the artefacts have been 
identified and corrected, the next stage involved calculat-
ing the Pulse Transit Time and removing any outliers. 

3.2.4 Pulse Transit Time and Outlier Removal 
Pulse Transit Time (PTT) is indirectly related to blood pres-
sure (BP) and is measured as the time (ms) between an R 
peak in the ECG and the subsequent S Peak of the PPG sig-
nals [33]. As the S Peaks occur after the heartbeat (i.e. ECG) 
there is a delay, which corresponds to the time it takes for 
the blood to reach the site of the PPG signal (in our case the 
earlobe) [30]. However, to get conclusive results, the 
method relies on these signals being calibrated [27, 33]. 
Therefore, prior to calculating PTT, the ECG/PPG signals 
must be inspected for drift, as even the slightest amount of 
drift within a time window can produce inaccurate data. 

Using the processed data from section 3.2.3, Algorithm 
3 (see Fig. 6) inspected the PPG signal to determine syn-
chronicity with the ECG signal and returned a matrix of 
synchronised peaks (syncPeaks).  

 

 
Fig. 6. Flowchart of Algorithm 3 that has been developed to inspect 
the PPG signal for synchronicity with the ECG 

 
 
Using the location of the ECG/PPG peaks as inputs 

(R_Peak_Location_ms_ECG and S_Peak_Location_ms_PPG), 
the algorithm first created a vector (maxECG) of the maxi-
mum amount of time that should occur between an ECG 
peak and the subsequent PPG peak (line 1). In this instance, 
the maximum time should be within 900 ms [34]. 

For each row in the signal (line 2), the algorithm re-
trieved the corresponding PPG Peak (rowPPGdata), maxi-
mum ECG peak time (maxECG) and ECG peak (rowECG) 
(lines 3 – 5). If the PPG peak (rowPPGdata) was greater than 
the ECG Peak (rowECG) and less than the maximum ECG 
peak time (maxECG) then it was an acceptable PPG peak 
and the corresponding row in the corrPPG(j) vector was 
flagged as 1 (line 7). However, if the peak was outside of 
these constraints then the peak was unacceptable and the 
corresponding row in the corrPPG(j) vector was flagged as 
0 (line 9). All rows that were flagged as unacceptable (i.e. 
corrPPG = 0) were removed (line 13). The corrected 
ECG/PPG signals (syncPeaks) were then returned (line 14). 

PTT was then calculated using equation (4). In this 
equation, each R Peak ECG sample (rPeakECGi) was sub-
tracted from the corresponding PPG S Peak sample 
(sPeakPPGi). 

 
𝑝𝑡𝑡 = 	𝑠𝑃𝑒𝑎𝑘𝑃𝑃𝐺A − 𝑟𝑃𝑒𝑎𝑘𝐸𝐶𝐺A      (4) 

 
The final stage was to use Algorithm 4 to identify outli-

ers within the data (see Fig. 7). Using the calculated PTT 
data, from equation 4, Algorithm 4 returned a vector of up-
dated PTT values (PTTupdated) where any outliers have 
been removed. 

 

Algorithm 3. Inspect PPG to determine synchronicity with 
ECG 

 
Data: R_Peak_Location_ms_ECG, S_Peak_Location_ms_PPG 
Result: syncPeaks 
 
1: maxECG = R_Peak_Location_ms_ECG + 900 
2: for each row (j) in the signal 
3:    get rowPPGdata = S_Peak_Location_ms_PPG(j) 
4:    get rowMaxECG = maxECG(j) 
5:    get rowECG = R_Peak_Location_ms_ECG(j) 
6:    if rowPPGdata > rowECG && rowPPGdata < rowMaxECG 
7:        corrPPG(j) = 1 
8:    else 
9:        corrPPG(j) = 0 
10:    end if 
11: end for 
12: create syncPeaks [R_Peak_Location_ms_ECG, S_Peak_Loca-
tion_ms_PPG, corrPPG] 
13: remove all rows in syncPeaks where corrPPG == 0 
14: return syncPeaks 
 



 

 

 
Fig. 7. Flowchart of Algorithm 4 that has been developed to identify 
and remove outliers from the PTT data 

 
In order to identify outliers, the algorithm first calcu-

lates the mean (meanPTT) and standard deviation (STD) 
(stdPTT) of the PTT data (line 1 – 2). Using these outputs, 

the mean PTT plus three standard deviations 
(meanPTTpSD) (line 4) and the mean PTT minus three 
standard deviations were calculated (meanPTTmSD) (line 
5). 

For each row in the PTT vector (line 7), if PTT was 
greater than meanPTTpSD or less than meanPTTmSD (line 
8) than the corresponding row in the largeSmallOut(j) vec-
tor was flagged as 0 (line 9), else an outlier was not de-
tected and largeSmallOut(j) was flagged as 1 (line 11). All 
rows that were flagged as outliers (i.e. largeSmallOut = 0) 
were removed (line 15). 

To summarise, the developed algorithms in section 3.2.3 
have identified and corrected artefacts in the filtered ECG 
and PPG data, whilst the developed algorithms in section 
3.2.4 have calculated pulse transit time (PTT) and have 
identified and removed outliers. TABLE 2 reports on the 
number of artefacts that have been identified and removed 
during this process of artefact correction and outlier re-
moval. The next stage required features to be extracted 
from this data. 

 
TABLE 2 

ARTEFACTS THAT HAVE BEEN IDENTIFIED AND REMOVED FROM 
THE DATA 

D
C
E 

Missed 
Peaks (%) 

False Posi-
tives (%) 

Large Outli-
ers (%) 

Small Out-
liers (%) 

Mean 
S
D 

Mean SD Mean SD Mean SD 

A 6.2 
28.
9 

0.7 7.0 0.1 0.5 0.1 0.7 

B 2.4 6.0 0.2 2.6 0.1 0.6 0.1 0.7 
 

3.2.5 Feature Extraction 
Using the corrected IBI and PTT signals, several statistical 
features were extracted from each 30-second non-overlap-
ping window. This is an essential stage as information is 
difficult to gather from raw data [35].  

3.2.5.1 Physiological Features 
Eleven physiological features have been obtained from the 
processed IBI and PTT signals in both DCEs. These features 
included six standard time domain features – Mean IBI, 
Standard Deviation IBI, Heart Rate, Mean PTT, Standard 
Deviation PTT and Root Mean Square of the Successive 
Difference of RR intervals (RMSSD). RMSSD is a measure 
of parasympathetic heart rate activity, with low values be-
ing indicative of reduced parasympathetic activation and 
high periods of stress [36, 37]. Five features from the fre-
quency domain were also extracted, including: 
• Total power (TP) of the signal from 0 – 0.4 Hz  
• High frequency (HF) occurring between 0.15 – 0.4 Hz 
• Low frequency (LF) occurring between 0.04 – 0.15 Hz 
• Very low frequency (VLF) occurring between 0.0033 – 

0.04 Hz 
• The ratio between low/high frequency (LF/HF) 

3.2.5.2 Driving Features 
Sixteen features related to speed were extracted during 
DCE A, including driving time (morning/evening), 

Algorithm 4. Identify and Remove Outliers from PTT 

 
Data: PTT 
Result: PTTupdated 
 
1: calculate mean PTT (meanPTT) 
2: calculate standard deviation PTT (stdPTT) 
3: 
4: meanPTTpSD = meanPTT + (3 * stdPTT) 
5: meanPTTmSD = meanPTT - (3 * stdPTT) 
6: 
7: for each row (j) in the PTT signal 
8:    if PTT(j) > meanPTTpSD || PTT(j) < meanPTTmSD 
9:        largeSmallOut(j) = 0 
10:  else 
11:      largeSmallOut (j) = 1 
12:  end if 
13: end for 
14: create matrix PTTupdated [PTT, largeSmallOut] 
15: remove all rows in PTTupdated where largeSmallOut == 0 
16: return PTTupdated vector 
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distance travelled (m), mean, median, standard deviation, 
variance, range, minimum, maximum and interquartile 
range of speed (m/s), as well as the time (sec) spent in var-
ious speed bands, which ranged from 0-4.5 m/s – 22.4-26.8 
m/s. 

During DCE B, features extracted from the smartphone 
included, location (latitude/longitude), speed (m/s), dis-
tance travelled (m) and driving time (morning/evening). 
The photographs have been manually analysed to extract 
features pertaining to contextual information that are re-
lated to the traffic environment, such as traffic density (car 
count in the lane(s) immediately ahead of the vehicle), road 
complexity (number of lanes) road type and weather. In to-
tal, twelve driving features have been extracted from the 
smartphone. 

In total, twenty-seven features have been extracted dur-
ing DCE A, whilst twenty-three features have been ex-
tracted during DCE B. The physiological, photograph and 
driving features from DCE B were amalgamated into one 
matrix on a common time basis of 30 second windows. Lo-
cation data (i.e. latitude/longitude coordinates) were also 
matched and appended to each time window. 

4 DATA ANALYSIS 
4.1 Data Labelling 
Questionnaires were used to capture the subjective 
changes in mood that occurred due to each journey. DCE 
A utilized a short-version of the State–Trait Anger Expres-
sion Inventory 2 (STAXI 2) [38] questionnaire, which was 
composed of fifteen statements (e.g. I am furious, I feel like 
yelling at somebody, etc.). Participants had to score their 
current feeling in relation to each statement on a Likert 
scale, whereby 1 = not at all, 2 = somewhat, 3 = moderately so 
and 4 = very much so. However, it was noted that social de-
sirability may have influenced the responses as there 
seemed to be a reluctance to admit negative feelings. 

In response to this issue, a short-version of the UWIST 
Mood Adjective Checklist (UMACL), which has been de-
veloped and validated by Matthews et al [39], was used in-
stead during DCE B. The questionnaire is composed of 
fourteen words that described feelings (e.g. happy, relaxed, 
sad, angry, etc.). Participants were required to rate how 
well each word described their current mood state on a 
Likert scale, where 1 = definitely, 2= slightly, 3 = slightly not 
and 4 = definitely not.  

Both questionnaires were administered using a custom-
made Android application and were completed before and 
after each journey to account for any changes in mood that 
occurred during the duration of the drive. The scores from 
the subjective questionnaires were processed to derive a 
change score (post-drive – pre-drive). Change scores re-
lated to the feeling of negative emotions were used as sub-
jective labels for the data to describe the level of stress as-
sociated with each journey. Those journeys that scored a 
change score a) above zero were labelled as stressful, b) be-
low zero were labelled as non-stressful and c) equal to zero 
were discounted as a change was not noted. Fig. 8 illustrates 
the frequency of journeys for each category. 

 

 
Fig. 8. Change scores across DCE A and B 

For each DCE, data pertaining to each drive/participant 
were amalgamated and physiological data were normal-
ized by calculating the z-score of each feature to account 
for individual differences between participants. These two 
labelled datasets (DCE A and DCE B) formed the basis for 
our analysis into detecting stress from multimodal lifelog-
ging data. 

However, as the datasets are unbalanced, it was neces-
sary to balance the minority class before the analysis could 
occur. The Synthetic Minority Over-Sampling Technique 
(SMOTE) has been used to generate new synthetic records 
to balance the dataset. This approach is an accepted tech-
nique for solving the problems related to unbalanced da-
tasets [40].  

4.2 Feature Selection 
Feature selection was performed to reduce the datasets 
into a subset of those features that clearly contributed to a 
discrimination between stressful and non-stressful jour-
neys. However, the analysis involved utilizing a number of 
supervised machine learning algorithms to classify the 
data using a) only driving features, b) only physiological 
features and c) an amalgamation of a and b (i.e. both driv-
ing and physiological features were merged together into 
one dataset of features). The purpose of this was to inves-
tigate the most appropriate type of features to use for de-
tecting stress. As such, the process of feature selection was 
undertaken separately on both types of features to select 
the best driving and physiological features, on each da-
taset. 

In order to remove irrelevant attributes features were 
ranked using the RELIEFF algorithm [41]. This algorithm 
uses a k nearest neighbour approach to find the average 
contribution of all k nearest hits and misses. This average 
is then weighted with the prior probability of each class to 
estimate the quality of the features. The ranked weights 
and features were plotted and eliminated based on the “el-
bow” of the graph, the point whereby the graph goes from 
“steep” to “flat”. Fig. 9 illustrates an example of a graph 
that has been plotted for DCE A’s driving features. 

TABLE 3 illustrates the features that have emerged as 
the top ranked variables that distinguished Stressful from 
Non-Stressful journeys within DCE A and B’s data. This 
analysis has removed 69% and 58% of the driving features 
and 55% and 27% of the physiological features from DCE 
A and B’s datasets (respectively). 

 



 

 

 
Fig. 9. Example of RELIEFF feature selection. Features that occur 
after the “elbow” of the graph have been removed. 

TABLE 3 
TOP RANKED FEATURES THAT HAVE BEEN SELECTED FOR EACH 

DATASET 

Driving Feature Weight Physiological Feature Weight 

DCE A 

0 – 4.5 m/s 0.0214 Mean PTT 0.0063 

AM_PM 0.0207 HR 0.0046 

8.9 – 13.4 m/s 0.0110 STD PTT 0.0020 

4.5 – 8.9 m/s 0.0050 LF_HF 0.0015 

Max Speed 0.0013 HF 0.0009 

DCE B 

Time Day 0.1246 Mean PTT 0.0264 

AM_PM 0.0995 Mean IBI 0.0172 

In Traffic 0.0501 STD PTT 0.0166 

Distance Travelled 0.0266 RMSSD 0.0161 

Car Count 0.0241 STD IBI 0.0150 

  HF 0.0121 

  TP 0.0084 

  LF 0.0038 

 
The features identified in TABLE 3 were then used 

within the subsequent evaluation. 

4.3 Classifier Performance 
The evaluation is based on a user-independent model that 
utilized both parametric and non-parametric classifiers, in-
cluding Linear Discriminant Analysis (LDA), Decision 
Tree (DT) and k-Nearest Neighbours (kNN), to differenti-
ate between stressful and non-stressful journeys. An en-
semble classifier was also built, which weighted and com-
bined the predictions of the above classifiers using the Hill-
Climbing algorithm [42, 43]. The benefit of using an ensem-
ble approach is that bias, variance and overfitting are re-
duced. 

Each classifier and the ensemble approach were evalu-
ated independently using a) only the driving features, b) 
only the physiological features and c) an amalgamation of 
a and b (i.e. both driving and physiological features were 
merged together into one dataset of features). Fig. 10 illus-
trates the approach that has been used for the classification 

analysis. 

 
Fig. 10. Classification approach that has been used during the evalu-
ation. 

The results were validated using repeated k-fold cross-val-
idation, whereby k = 10 and repetitions = 100. The perfor-
mance measurements that were calculated included: 
• Accuracy – An index of overall performance 
• F1 Score – The harmonic mean of Precision [Positive Pre-

dictive Value] – the proportion of results that have been 
marked as positive (stressful) where a true positive 
(stress) has actually occurred and Recall [True Positive 
Rate/Sensitivity] – the proportion of stressful drives 
(positives) that are correctly identified as being stress-
ful (positive). 

• Balanced Error Rate (BER) – The average errors of each 
class. 

• Receiver Operating Characteristics (ROC) Curve – Sum-
mary of performance that plots the True Positive Rate 
(TPR) [Recall/Sensitivity] against the False Positive Rate 
(FPR) [Type I Error] – false alarms that indicates that an 
instance has been classified as stressful when stress is 
actually not present. 
 
TABLE 4 illustrates that during DCE A, the independent 

classifiers LDA and DT produced comparable accuracies to 
the ensemble approach (61.33%, 61.06% and 61.29% respec-
tively) and error rates (38.61%, 38.91% and 38.61% respec-
tively). This pattern demonstrates that these classifiers 
were similar in their performance of detecting stressful 
journeys and in the amount of errors that were produced 
for each class. However, DT outperformed the others and 
had the highest F1 (65.43%), which illustrates that there 
was a higher balance between precision and recall, i.e. cor-
rectly detecting a stressful drive when stress has actually 
occurred. This illustrates that for features related only to 
speed a simple linear model will suffice. However, during 
DCE B, the ensemble approach outperformed the inde-
pendent classifiers in terms of the highest accuracy, F1 and 
lowest BER. This pattern demonstrates that when contex-
tual data is introduced, in addition to speed, and the clas-
sifiers are combined the results improve. Overall, the en-
semble approach in conjunction with contextual features 
about the drive achieved the best performance across both 
DCEs. 

TABLE 5 illustrates that using only physiological fea-
tures improved upon the driving features. Furthermore, 
during both DCEs, the ensemble approach outperformed 
the independent classifiers in terms of higher accuracy 
(65.04% and 80.04%), F1 (66.3% and 78.98%) and lower BER 
(34.96% and 19.91%).  
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TABLE 4 

CLASSIFIER PERFORMANCE FOR DRIVING FEATURES ONLY 
 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 
Accuracy 61.33% 61.06% 58.11% 61.29% 74.92% 75.31% 75.27% 77.28% 

F1 59.32% 65.43% 57.78% 62.80% 74.69% 75.64% 74.64% 76.92% 
BER 38.61% 38.91% 41.88% 38.61% 25.07% 24.68% 24.73% 22.72% 

 
TABLE 5 

CLASSIFIER PERFORMANCE FOR PHYSIOLOGICAL FEATURES ONLY 
 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 
Accuracy 58.96% 62.75% 63.72% 65.04% 73.16% 75.66% 78.65% 80.04% 

F1 59.37% 65.66% 64.59% 66.30% 70.86% 75.47% 76.49% 78.98% 
BER 40.96% 37.33% 36.29% 34.96% 27.02% 24.02% 21.60% 19.91% 

 
TABLE 6 

CLASSIFIER PERFORMANCE FOR MERGED DRIVING AND PHYSIOLOGICAL FEATURES  
 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 
Accuracy 63.29% 64.29% 69.26% 69.73% 81.73% 78.86% 86.02% 86.86% 

F1 64.06% 67.44% 69.72% 70.40% 80.42% 78.05% 84.72% 85.89% 
BER 36.69% 35.82% 30.75% 30.27% 18.31% 20.92% 14.12% 13.16% 

 
This illustrates that the overall performance and 

quality were greatly improved and a high level of bal-
ance between precision and recall, as well as a lower er-
ror rate, was produced when the independent models 
were combined. 

TABLE 6 demonstrated the best results, which oc-
curred when both driving and physiological features 
were amalgamated into one dataset and used in con-
junction with ensemble learning. This approach gener-
ated the highest overall accuracy (86.86%), F1 (85.89%) 
and lowest BER (13.16%) across TABLE 4, TABLE 5 and 
TABLE 6. 

ROC curves have been produced to summarise the 

performance of the ensemble classification method for 
each set of features (see Fig. 11). As it can be seen in Fig. 
11, merging both driving and physiological features into 
one dataset produces a high probability of detecting 
that a stressful drive will be correctly identified when 
stress was present, whilst ensuring that falsely classify-
ing an instance as stressful when stress is not present is 
minimized. 

To summarise, the results confirm the conclusions 
that may be drawn from these results, which illustrates 
that using both driving and physiological features, in 
conjunction with ensemble learning, may be the most 
appropriate classifier for the detection of stress. 

             
a) b)              c) 

Fig. 11. ROC Curves of the Ensemble classification approach for DCE A and DCE B using a) driving features b) physiological features and c) 
an amalgamation of driving and physiological features 



 

 

5 DISCUSSION 
This paper demonstrates the feasibility of applying our 
signal processing approach to real-world multimodal 
lifelogging data. These data were collected using mo-
bile/wearable devices during everyday driving with 
the aim of detecting those journeys that were associated 
with increased stress.  

In order to demonstrate the feasibility of our ap-
proach, we performed two data collection exercises 
(DCE A & B). The first piece of data collection relied ex-
clusively on speed data to characterise the driving envi-
ronment and data were labelled on the basis of re-
sponses to the STAXI questionnaire, which specifically 
captures the subjective experience of anger. This experi-
ence led to two key developments of our experimental 
protocol for DCE B. In the first instance, we coded 
events captured on the camera to increase the range of 
variables obtained from the driving environment, e.g. 
number of vehicles, weather, road type. In addition, we 
switched from the STAXI to the UMACL, which is a 
questionnaire designed to index subjective mood. This 
latter decision represented a response to the shortcom-
ings of the STAXI questionnaire. It was apparent during 
the first data collection exercise that responses to the 
STAXI was influenced by social desirability. Many par-
ticipants were either reluctant to acknowledge in-
creased anger or their experience of anger was transi-
tory and had disappeared when the journey was over. 
This trend is apparent in Fig. 8 by the number of subjec-
tive responses where no change was observed. The 
UMACL, on the other hand, takes the form of a mood 
adjective checklist, which is a less direct method of as-
sessment than STAXI and shifts the emphasis towards 
feelings of tension, which are more socially acceptable 
than an expression of anger. The choice of self-report 
tool is particularly important for this type of evaluation, 
where labels for classification are derived from subjec-
tive self-assessment. It is important that any subjective 
questionnaire that is incorporated into this type of in-
vestigation is capable of quantifying self-reported states 
with a high degree of accuracy and sensitivity. 

Our approach to classification involved a number of 
distinct phases that were designed in order to gauge the 
relative contribution of variables derived from driving 
and physiology. The application of the RELIEFF algo-
rithm (TABLE 3) demonstrated that driving features 
that captured episodes of journey impedance (e.g. slow 
speed, high car count) were well represented, as was 
time of day. With respect to the latter, we would con-
clude that traffic density was higher in the late after-
noon compared to the morning, hence variables related 
to time of day were effectively proxies for journey im-
pedance. It was noted that PTT was the physiological 
feature with the highest score for both data sets, pre-
sumably due to its association with blood pressure. 
Heart rate and measures related to heart rate variability 
were also selected, particularly high frequency of heart 
rate variability (HRV), which is associated with 

parasympathetic activation and inflammation. 
The methodology for classification was designed to 

test both driving and physiological data from both data 
sets using a range of algorithms both alone and as an 
ensemble (TABLE 4 – TABLE 6). With respect to driving 
data and using F1 as a performance indicator, there was 
little differentiation between the three algorithms for 
DCE B, whereas Decision Trees (DT) showed a signifi-
cant advantage for DCE A (TABLE 4). As a general trend 
for classification using driving data, particularly when 
looking at ensemble performance, DCE B performed 
substantially higher (76.92%) compared to DCE A 
(62.8%). We assume this advantage was achieved by ex-
tending the range and variety of driving variables in 
DCE B beyond those measures of speed used in DCE A. 
If we consider the results of classification using physio-
logical data (TABLE 5), once again using F1 as a meas-
ure of performance, it is noted that both DT and kNN 
models deliver superior classification to LDA. A com-
parison of ensemble performance shows a clear ad-
vantage for DCE B (78.98%) over DCE A (66.3%), pre-
sumably due to the higher number of physiological fea-
tures selected by the RELIEFF algorithm during the fea-
ture selection phase (TABLE 3).  

Those subjective states experienced by the driver 
during a commuter journey, whether they are associ-
ated with anger or anxiety, represent an amalgamation 
of the driving environment and the physiological re-
sponses of the individual to that driving environment. 
This is the reason why those classification models that 
merged both sets of features delivered higher classifica-
tion accuracy compared to those based on either driving 
or physiology alone (TABLE 6). If we look at ensemble 
performance (using F1) for DCE A, we see classification 
performance of 70.4% (TABLE 6) compared to 62.8% 
(driving) and 66.3% (physiology) from the equivalent 
models in TABLE 4 and TABLE 5. The same trend was 
observed for DCE B where ensemble classification was 
85.89% (TABLE 6) compared to 76.92% and 78.98% for 
driving (TABLE 4) and physiology (TABLE 5) respec-
tively. The use of physiological features for classification 
of psychological states in the real world is significantly 
enhanced by the inclusion of features related to the con-
text of those psychological states. 

The availability and miniaturization of sensors has 
enabled the continuous measurement of quantifiable 
data in everyday life. However, as observed by Hovse-
pian et al. [25], we are still lacking a well-validated 
stress model that can be used for managing stress in the 
natural environment. For a model to be considered a 
“gold standard” for continuous stress assessment, a 
high accuracy of ≥ 70% outside a lab setting (in the field) 
is required [25]. The results from this study are positive 
and provide a successful method of pre-processing mo-
bile lifelogging physiological and driving sensor data to 
achieve a maximum accuracy of 86.9% in detecting 
stress (TABLE 6). 

Our work demonstrated an improvement over simi-
lar works in the area of detecting stress “in the wild”. 
For instance, Hovsepian et al. [25] utilized ECG, HRV 
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and respiration features within a support vector ma-
chine (SVM) to classify stress. Their data has been la-
belled using self-reports of stress that have been ob-
tained using an adaptation of the Perceived Stress Scale 
(PSS). Their results demonstrate an accuracy of 72% in 
the field. However, our work has improved upon this 
by achieving a maximum accuracy of 86.9% (TABLE 6), 
which could be attributed to the method that has been 
applied to pre-process our data and the selection of fea-
tures that has been used. This work [25] utilized 37 fea-
tures, whereas in our work we have reduced our feature 
set to five using feature selection to select a subset of 
those features that effectively discriminated stressful 
drives from non-stressful ones. Most importantly, we 
have utilized primarily HRV-related features, including 
RMSSD, which can be calculated in real-time and is cor-
related with markers of inflammation [22]; for critical 
assessment of this link, see [44]. 

The collection of ambulatory data outside of a labor-
atory presented a number of challenges, such as data 
loss (due to physical artefacts), a reliance on participants 
operating the sensors properly and completing the data 
collection protocol consistently and correctly. Although 
laboratory experiments offer greater control over exper-
imental variables, they suffer with respect to ecological 
validity of the phenomenon under investigation [45]. 
The presence of potential confounds and loss of control 
over the environment that characterizes work in the 
field is the price to be paid for taking research on stress 
out of the laboratory. This transition can also inform the 
development and testing of mobile applications as their 
usability can only be properly evaluated in the field [45]. 
Furthermore, as discussed in previous work [46], life-
logging research tends to lack robust data analytical ap-
proaches and real-world datasets. As such, there is a 
pressing need to develop validated approaches to pre-
processing real-world data so that such applications can 
be taken forward for use in that research community. 
The novelties of the work that we have described in-
clude: 

 
1) Providing a set of algorithms for pre-pro-

cessing raw lifelogging data that has been ob-
tained from mobile/wearable devices in order 
to calculate valid measures of heart rate varia-
bility 

2) Providing a set of algorithms for artefact iden-
tification and interpolation so that missing 
peaks and false positives can be corrected 

3) Providing a comparison between several clas-
sifiers to determine the most appropriate ap-
proach for detecting stress. The accuracy of the 
stress detection is significantly enhanced when 
features related to the physiology and context 
are included in the classification task. 

 
This work also has implications for advancing the 

field of lifelogging. By combining traditional lifelogging 
techniques with psychophysiological signals to quan-
tify negative states and their physiological correlates, 

which we may not be overtly aware of, can deliver a 
greater understanding of environmental triggers for 
those negative states. This benefit may have implica-
tions for long-term health as the repeated experience of 
stress can induce a chronic inflammatory process that 
can culminate in atherosclerosis (a build-up of fatty ma-
terial inside arteries that makes a major contribution to 
heart attacks/strokes) [47]. 

6 CONCLUSIONS AND FUTURE WORK 
Our work demonstrated a viable method of pre-pro-
cessing raw lifelogging data in order to calculate valid 
measures of heart rate variability and correct artefacts 
for the purpose of classifying periods of stress during 
real-world driving. 

Our approach has also provided an improvement 
over the level of accuracy achieved in comparison to 
other works in the area of detecting stress “in the wild”. 
Nevertheless, there are limitations in the study that 
could be improved upon via further investigation. For 
instance, this work has labelled data based on the re-
sults of the subjective questionnaires that were captured 
before/after each drive, however this approach has sig-
nificant limitations for labelling psychophysiological 
data and measures from the driving environment, both 
of which fluctuates in real-time. In addition to subjec-
tive self-report data being associated with retrospective 
bias and having limited fidelity, questionnaire data can 
only represent the conscious experience of the individ-
ual, whereas psychophysiological data responds to both 
conscious and subconscious processes. An interesting 
line of enquiry would be to label the data based on ei-
ther psychophysiology or driving conditions and com-
pare those results with the subjective labels. Labelling 
via physiology/driving conditions would overcome 
those limitations associated with self-reporting. Addi-
tionally, exploring user-dependent models is another 
line of enquiry that is worth pursuing in order to build 
models that can be personalised to the individual. Fur-
ther research is required to explore these ideas and to 
assess if the findings can be replicated in other domains 
of emotion detection. 
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