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Abstract 

Physiological Computing describes a category of human-computer interaction where 

physiological data from the brain and body are transformed into input control to inform software 

adaptation.  These physiological data are used to provide a dynamic representation of the user 

with respect to extending the body schema (sense of personal agency) and the body image 

(perception of cognitions, emotion, motivation etc.).  A dynamic user representation can be used 

as a form of input control and to guide a process of intelligent adaptation.  This chapter will 

provide a historical perspective on the concept and describe the cybernetic logic of the closed-

loop technology.  Important aspects of the adaptive loop will be described such as wearable 

sensors, the process of real-time classification and how a process of monitoring, analysis and 

adaptation may enhance human-computer interaction.   

 

Keywords:  Physiological Computing, Psychophysiology, Neuroergonomics, Intelligent 

Adaptation 
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1.  INTRODUCTION  

Physiological computing is characterised by a live connection between technology and 

the human nervous system. This act of monitoring renders the machine privy to a variety of data: 

electrochemical activity from the epidermis, fluctuations in muscular tension, the 

haemodynamics of the cardiovascular system and the electrocortical fluctuations of the brain.  

The connection between person and technology corresponds to an act of digital embodiment.  By 

connecting to a computer, the human extends the boundaries of the central nervous system, 

communicating directly with technology via those physiological processes that underpin 

thoughts, emotions and actions. 

Digital embodiment has a number of implications for the way in which we interact with 

technology.  Conventional human-computer interaction is asymmetrical with respect to the flow 

of information.  The user can interrogate a huge range of data concerning the internal processes 

within the computer (e.g. RAM use, disk space etc.) whilst the computer remains essentially 

blind to the psychological intentions and experience of the user. Continuous monitoring of the 

central nervous system is one way to facilitate a form of symmetrical HCI where information 

flows simultaneously from computer to user and vice versa (Hettinger, Branco, Encarnaco, & 

Bonato, 2003).  The implications of this innovation are potentially profound.  For example, 

‘smart technology’ demonstrates a degree of intelligence by exhibiting sensitivity to task context 

and user intention without explicit information (Norman, 2007).  Monitoring physiological data 

is a means of allowing a computer system to become aware of the user as a dynamic entity with 

the major advantage of being continuously available, even in the absence of any overt forms of 

behavior (Byrne & Parasuraman, 1996). 
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1.1 Categories of Physiological Computing 

Physiological computing systems fall into one of two broad categories.  The first are 

designed to extend the body schema, i.e., the system of sensory-motor functions that we use 

every time we tap a key or move a joystick.  These functions are guided by a sense of agency, 

i.e., I am the one doing this. For example, the Brain-Computer Interface (BCI) offers an 

alternative mode of input control to extend the body schema (Allison, Wolpaw, & Wolpaw, 

2007). BCIs capture electrocortical activity at source (e.g., the intention that precedes movement 

or selection) and offer a highly novel form of hands-free interaction that is capable of 

communicating with standard screen-based technologies as well as specialised devices such as 

prostheses.  The same logic can be extended to monitoring muscle activity via electromyography 

(EMG). An EMG sensor on the forearm can detect patterns of gestures (Zhang et al., 2011) in a 

ubiquitous computing scenario.  Similarly, muscle activity in the form of eye movements can be 

used for cursor control and other forms of input (Majaranta & Bulling, 2014). 

The second category of physiological computing is relevant to perceptions of internal 

states related to psychological states.  The body image has been defined as “a complex set of 

intentional states and dispositions… in which the intentional object is one’s own body” 

(Gallagher, 2005) (p.24. Physiological computing systems augment the body image by 

monitoring and responding in an adaptive fashion to spontaneous data originating from psycho-

physiological interaction in the central nervous system.  Biocybernetic Adaptation covers a range 

of systems designed to capture psychological states relating to performance and wellbeing 

(Allanson & Fairclough, 2004; Fairclough, 2009).  These states include psychophysiological 

signatures of emotions, such as anger, frustration or fear, or changes in cognitive activity related 

to mental workload.  For certain categories of software, such as games or auto-tutoring systems, 
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we may be interested in changes that reflect elements of both cognition and emotion, i.e., when 

someone is mentally overloaded (too much information, not enough time), they also may 

experience anxiety or anger.  This ‘wiretapping’ approach shares a number of features with 

biofeedback technology. Both the facilitate the process of self-regulation by providing feedback 

of physiological activity that can occur outside of conscious awareness.  By interacting with data 

from the brain and body at an interface with technology, users can gain insight into states of 

cognition and emotion that can facilitate self-knowledge and associated strategies of self-

regulation.  There are two important facets of biocybernetic adaptation that distinguish this 

category of control from those BCI systems designed to extend the body schema.  The system is 

designed to adapt to spontaneous changes in the psychological state of the user.  If the person is 

frustrated, the software may offer help; if the user is overloaded, the software may filter the flow 

of incoming information.  This is an implicit mode of HCI with no requirement for the user to 

exhibit intentional behaviour, which has also been termed passive BCI (Zander & Kothe, 2011). 

Physiological computing systems are designed to extend the body schema or the body 

image by creating a dynamic quantification of those entities that may be accessed by a 

technological device.  It is the quality of this dynamic quantification that will determine the 

efficacy of the interaction between user and system. 

1.2 The Biocybernetic Loop 

The biocybernetic loop (Pope, Bogart, & Bartolome, 1995) serves as a unifying concept 

for all physiological computing systems. This concept is derived from the cybernetic model of 

control and communication within a closed loop (Wiener, 1948).   

There are three generic stages of data processing within this feedback loop: collection, 

analysis and translation.  The first stage describes the collection of physiological data via sensor 
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apparatus.  A user at a desktop computer may wear a simple device to access heart rate or skin 

conductance level. The design of wearable, ambulatory sensors for data collection is a vital 

component of the data collection phase. The second stage of data analysis receives filtered data 

as an input and both quantifies the data in an appropriate way and identifies/corrects for the 

presence of artifacts. The analysis algorithm should be capable both quantifying incoming data in 

real-time and identifying those periods that include ‘bad’ data.  It would be ideal if the analysis 

algorithm were capable of not only identifying sections of ‘bad’ data but also subjecting these 

periods to a correction algorithm, in order to preserve the integrity of the data stream.  The 

analysis stage should yield an appropriate and accurate quantification of physiological data but 

this is a very loaded phrase; much depends on what particular aspect of psychology or behaviour 

is the target or focus of the biocybernetic loop. The final process of the loop is translation.  This 

stage describes how physiological units of measurement are converted into a computer command 

to be executed at the human-computer interface.  

The three stages are realised in different ways depending on the category of physiological 

computing system.  For EMG-based interfaces and some categories of BCI (e.g. those where 

motor functions are captured at the cortex), the function of the biocybernetic loop is to translate 

patterns of physiological activity into a specific command.  This act of translation may be 

representative and functionally equivalent in some cases.  A system that translates vertical and 

horizontal eye movement (monitored via EOG) into vertical and horizontal movements of a 

cursor on a screen is characterised by one-to-one correspondence as eye movements are scaled 

into x and y coordinates on the screen. 

Other categories of physiological computing depend on the accurate identification of 

spontaneous psychological states to inform system adaptation.  The obvious examples fall into 
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the category of biocybernetic adaptation, such as affective computing technologies designed to 

capture changes in emotional states.  In these cases, the link between physiological activity and 

psychological processes is analogous rather than strictly representative.  

The translation of real-time physiological data into computer control is achieved by a 

component called the adaptive controller.  This is an element within the biocybernetic loop that 

incorporates the translational rules of the system, e.g., IF heart rate shows a rise of 30% THEN 

offer help, IF P300 amplitude is maximum for the ‘delete’ command THEN activate delete 

function. For pattern-matching algorithms that translate physiology into input control at the 

interface, adaptive control is relatively straightforward. Detection of the upward movement of 

gaze can be translated into vertical movement of the cursor with an emphasis on low-level 

dynamics, such as the gain between EOG activity and sensitivity of cursor response. Controlling 

the movement of an avatar via BCI would require the adaptive controller to recognise and 

respond to template patterns of EEG activity that represent left/right and forward/backwards.  

For those physiological computing systems that extend the body image, the purpose of the 

adaptive control is to translate physiological activity into an efficient (in terms of the rate of 

information transfer) and responsive mode of input control. 

The controller serves a different function in the case of biocybernetic adaptation.  These 

systems are designed to promote positive states and to prevent/ameliorate undesirable ones. 

Biocybernetic software serves as a dynamic mechanism for software to promote the same design 

goals.  This is a very disruptive concept with respect to how people currently interact with 

technology.  There is a shift of influence between user and system because biocybernetic control 

is designed to shape and manipulate the psychological state of the user.  If an operator 

experiences a high level of mental workload, the system will intervene to reduce workload and 
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preserve safety.  If the player of a computer game is frustrated by the experience of repeated 

failure, the software may adapt to reduce challenge or offer help.  The benign nature of these 

adaptations should not mask the fact that a working biocybernetic system is a machine with a 

prescribed agenda, a machine that deploys real-time adaptation as a means to achieve certain 

design goals, e.g., to prevent accidents, to promote positive affect, etc. This autonomy is 

achieved by incorporating a dynamic representation of the user, and by default the actual user, as 

an element in the control loop.  The net result of the closed-loop design is an inevitable shift 

within the human-computer dyad towards the computer as a co-worker or team-player who 

actively is aware of the goals of the user as opposed to the dumb slave system that I’m using to 

type these words. 

The biocybernetic loop may function at different levels of the human-computer 

interaction.  With respect to muscle interfaces and BCI, the biocybernetic loop functions within 

the HCI dyad and is designed to explicitly communicate commands to the interface.  The loop 

mediates the intentions of the user to move the cursor down or to make the avatar move forward.  

Biocybernetic adaptation tends to function at the meta-level of the HCI, adjusting the parameters 

of the interaction (e.g., altering game difficulty) or making dynamic interventions (e.g., offering 

help, activating automation).  This type of adaptation may also be achieved without any 

conscious intention on the part of the user.  It is even possible for biocybernetic adaptation to 

occur in ways that are sufficiently subtle to escape the conscious perception of the user.  The 

purpose of the biocybernetic loop is to adjust settings and make interventions in order to shape 

the interaction in a desirable way.   
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The biocybernetic loop functions both as a model for information flow and a unifying 

concept for physiological computing systems.  It encapsulates the basic properties of sensor 

design and signal processing that underpin all categories of system.   

 

2. MEASUREMENT & CLASSIFICATION  

The biocybernetic loop is the fundamental control unit of all physiological computing 

systems. The results of this data processing ‘pipeline’ inform the mechanism of software 

adaptation.  The loop is responsible for the interpretation of raw physiological data into a 

coherent response from computer software.  The process encapsulated with the biocybernetic 

loop is associated with a string of important caveats:  

1. physiological measures must be a valid measures of psychological concepts 

2. unobtrusive hardware must exist that is capable of capturing these measures in the field 

with sufficient fidelity 

3. data must be analysed and categorised in near-real time in order to deliver a 

representation of the user to the system 

4. changes in user representation must be translated into software control and adaptation 

that is both responsive and coherent.   

These issues may be studied in isolation from one another (and often are), but from the 

perspective of an integrated system development, each part of the loop should be considered as 

mutually dependent on the others. 

2.1 Inferring psychological meaning from physiological signals 

The goal of measurement is the inference of the psychological or behavioural state of the 

user based on patterns of psychophysiological activity. One challenge for the designer of a 
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physiological computing system is the identification of a distinct physiological pattern that is 

consistently associated with a target psychological concept.  These patterns are used to trigger 

events at the interface and they must be salient, unique and reliably detected in real-world 

conditions.   

One way to increase the consistency of the psychophysiological inference is to capture 

the responses to a stimulus with known properties.  An array of letters where each item flashes in 

sequential fashion can be presented in order to capture both the presence and magnitude of an 

evoked response potential (ERP) from EEG activity.  It is known that the magnitude of certain 

components of the ERP (e.g., P300) respond to attentional processing, hence the letter one 

wishes to select from this array will generally deliver a greater magnitude of response.  This 

“probe” strategy employs temporal coincidence in order to link a specific physiological pattern 

with a particular stimulus event.  By contrast, the ‘wiretapping’ ⁠ approach that characterises 

biocybernetic adaptation seeks to capture psychophysiological “signatures” of emotions and 

cognitive states against a background of spontaneous activity.  This type of system must work 

with a low signal-to-noise ratio as the size of physiological response to an emotional event is 

relatively small compared to the magnitude of change due to physical movements and other 

confounding factors. It is a mistake for any designer to assume that physiological measures are 

capable of directly capturing psychological states in a ‘plug-and-play’ fashion.   

For those systems designed to extend the body schema, the accurate inference of 

intention is the critical issue.  The ‘wiretapping’ systems that fall into a broad category of 

biocybernetic adaptation are designed to classify spontaneous activity into pertinent categories 

that capture ‘target state’ of user psychology.  The process of inferring psychological events 

from physiological measures bears careful consideration in both cases.  A penetrating analysis 
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was provided by (Cacioppo & Tassinary, 1990) who scruntinised the specificity of association 

between concept and measure. The strongest category of psychophysiological inference for the 

development of a physiological computing system is the ‘one-to-one’ relationship where a 

particular physiological measure operates as a unique marker of a specific psychological 

construct across all contexts of measurement.  This kind of relationship is optimal but is also the 

rarest level of psycho-physiological inference, particularly in the context of real-world testing.  

Inference from psychophysiological measures can be a messy and inconclusive business, 

particularly in the context of everyday use outside of a laboratory. The most important starting 

point for the designer is a concrete understanding of the classification scheme that the act of 

measurement must deliver in order to make the system work, i.e., how many categories must be 

distinguished for the system to work (Fairclough & Gilleade, 2012). In all cases of designing and 

developing physiological computing systems, it is important to select sensors/measures to the 

adaptive or input capabilities of the system.  A concrete notion of what the measures are meant to 

achieve, in what environment and with whom provides an essential context within which to 

select, test and validate the psycho-physiological inference. 

2.2 Wearable sensors 

The challenge for the design of sensors for physiological computing system is to create 

wearable sensors that maximise comfort, minimise intrusion and may be used in a public space 

without any embarrassment or self-consciousness – whilst maintaining a high fidelity of signal 

quality. 

When designing sensors with low intrusiveness, there is a temptation to strip down the 

process of measurement.  This simple strategy equates the number of sensors or measures 

directly to the comfort of the user (fewer sensors = greater comfort for the user) but this is a 
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myopic approach.  Ambulatory sensors are designed to be worn in the field, hence they must 

capture not only the signal of interest but also as many potential sources of noise as possible, in 

order to facilitate a process of artifact detection and correction. In the field, it is important to 

capture metabolic changes due to everyday activities using pedometers or accelerometers to 

quantify movement and to incorporate these variables into the diagnosis produced by the system.  

We may look to other data sources to provide additional context for our interpretation of 

spontaneous physiological activity, such as time of day or room temperature or background noise 

level.  From the perspective of the user experience, the level of comfort associated with data 

capture is an overriding concern.  As system designers, we need to move towards an invisible 

monitoring process wherein wearable sensors and the process of data capture, storage and 

analysis are rendered as unobtrusive as possible.   

Remote sensing offers the best chance to achieve an “invisible” process of physiological 

monitoring (Poh, McDuff, & Picard, 2011), but like all camera-based systems, the sensor 

requires a stationary user in order to work.  Wearable devices, such as chest or wrist straps or 

earplugs, have the advantage of being ambulatory in the sense that the user can move around, 

albeit with the disadvantage that sensors are relatively intrusive as they involve contact with the 

skin.   

The provision of sensor apparatus capable of comfort and signal fidelity is an essential 

development if we are to realise the potential of physiological computing systems.  If these 

devices are not available, physiological computing will never reach the vast majority of users.  It 

is also important for sensor technology to come equipped with Software Development Kit (SDK) 

and the capability to use standard protocols for communication, such as Bluetooth.  There is 

enormous potential for wearable sensors to interface with mobile devices via the specialised 
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software niche of the app economy if the right combination of hardware and software tools can 

be brought to the market. 

2.3 Signal analysis and classification 

Once signals have been captured and filtered by the system, these data are subjected to a 

process designed to identify and classify significant patterns in the data.  This combination of 

signal processing and diagnosis represents the operational crux of the biocybernetic loop 

whereby unique patterns of physiological activity are associated with psychological events.   

There are several approaches to signal classification, which are applied to different types 

of categorisation ‘problems’ in physiological computing systems.  The identification of a 

spontaneous psychological state falls in the domain of affective computing, where ‘target states’ 

such as frustration or excitement are operationalised as a pattern of physiological activity 

distinguishable from spontaneous responses that are associated with other states.  The successful 

operation of a BCI requires accurate identification of physiological features associated with the 

initiation of input control, such as activity in the somatosensory cortex or a positive deflection of 

electrical activity that occurs in the same temporal window as a particular stimulus.  Signal 

classification must be both fast and accurate to facilitate real-time input control.  The 

classification of physiological signals along a unidimensional continuum, such as anxiety or 

mental workload, represents a different category of assessment where estimates of magnitude 

(low, medium, high) on a unidimensional scale are the focus of signal classification.   

The purpose of signal classification is to create a literal interface between the human 

nervous system and a repertoire of software responses.  But the data processing “pipeline” that 

underpins this interface must be carefully constructed in a bottom-up fashion.  To use an 

analogy, if we were to design a system for language translation, the first design question would 
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concern the size of the vocabulary; in other words, exactly how many different words must be 

recognised and translated by the system in order to function with a degree of utility? This is also 

a good starting point for the process of data classification in a physiological computing system.  

All systems are associated with a functional vocabulary that describes how many commands, 

subjective states or gradations of experience must be recognised in order to support successful 

operation. A system may function adequately on the basis of simple binary differentiation of two 

classes.  Other systems may be equipped with repertoires of five or more adaptive responses, 

amplifying the challenge of accurate data classification.  The number of items in the functional 

vocabulary defines the boundaries of the data classification problem inherent in the design of 

physiological computing systems, e.g., 2 classes or 5 classes or 10 classes.  Without this kind of 

operational context, the specification of an optimal process of signal classification remains an 

abstract proposition.  

The degree of similarity or overlap between target states is also important for 

classification accuracy.  Making a two-category distinction between happiness and anger would 

generally yield more accurate classification than an attempt to differentiate fear from anger.  This 

is logical because similar emotional states contain greater overlap in terms of how they impact 

on psychophysiological reactivity. 

The application of machine learning algorithms is a common strategy for classification 

within the biocybernetic loop. The general methodology for the construction of a classifier is to 

generate a training set, which accurately represents the dimensional space associated with the 

functional vocabulary of the system.  This database will subsequently be used to train a classifier 

and represents the template for all subsequent acts of categorisation conducted by the system, 

therefore it must provide a stable and well-defined mapping of physiological measures onto 
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psychophysiological space.  The first obstacle for classification is deriving and defining an 

optimal set of training data for the machine-learning algorithm.  Data from the brain and body, 

particularly in the field, has poor signal-to-noise ratio, i.e., contaminated by physical artifacts 

that may account for outliers in each “class” to be identified.   

Signal classification is generally based around the creation of features (or vectors) that 

are derived from multiple measures of psychophysiology.  There is a good deal of research 

literature where single data streams are analysed in myriad ways; for example, measures of heart 

rate can be expressed in terms of descriptive statistics (mean, maximum, minimum, standard 

deviation) or subjected to further analysis to yield power in low and high bands, then further 

expressed as the ratio of both bands.  The tendency to measure lots of variants from the same 

basic signal source creates the so-called ‘Curse of Dimensionality’ where the amount of data 

required to describe different classes increases exponentially with the dimensionality of those 

features that are used as input.  The practical implication of this ‘curse’ is that the designer must 

acquire more training data when he or she adds new features as inputs to the classification 

process⁠.  

The act of classification may subsume both the process of discrimination and the implicit 

mapping onto psychological categories.  It is hoped that the training set provides a good mapping 

in terms of a quantitative discrimination, but whether it provides the best possible mapping 

remains an open question.  If we consider which factors may contribute to classification errors, 

three main sources are most likely (Lotte, Congedo, Lecuyer, Lamarche, & Arnaldi, 2007): 

1. influence of noise from non-psychological sources, as stated earlier, noise is a ‘fact of 

life’ as far as ambulatory psychophysiology is concerned 
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2. degree of divergence between the estimated mapping provided by the training set and the 

best mapping possible.  This second factor is determined purely by the representativeness 

of the training set, which is defined as the capacity of the training set to generalise across 

all instances of the target state or pattern.  For instance, is the pattern of 

psychophysiological reactivity associated with a specific target state during the training 

set sensitive to all other instances of the target state that may be encountered by the 

system.  The degree of this divergence between what is measured by the system now and 

what was measured during training is called Bias. 

3. degree of sensitivity of the classifier to the training set.  It is important to note that 

different approaches to signal classification differ with respect to their susceptibility to 

specific and idiosyncratic qualities of the training dataset.  The degree of sensitivity to the 

training set exhibited by the classifier is called Variance. 

This summary provides an overview of the challenges facing the design of a 

classification system using live data from brain or body as an input and producing real-time or 

near-real-time outputs.  Noise is an irreducible component of the measurement process and may 

be dealt with by filtering the signal.  If bias and variance are both low, we would expect 

classification errors to be minimal because the mapping is good and sensitivity to the training set 

is low.  Obviously, a poor mapping can originate from several sources, such as multiple 

categories that are not clearly discriminated or a substantial overlap between the 

psychophysiological ‘signatures’ of different target states.  If the training set is situation-specific, 

then classification errors will rise due to increased variance.   

A good training set represents an essential prerequisite to enhance the accuracy of a 

classification algorithm.  “Good” training data may be defined according to a number of different 
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criteria.  It is important to choose a psychophysiological measure (or collection of measures) that 

is sensitive to changes in psychological state or an intentional act.  This measure must be 

sufficiently robust to exhibit sensitivity under the working conditions of the system.  A training 

set that captures the range of physiological responses under realistic conditions will reduce the 

level of bias and variance in the classification system.   Ecological validity is one key aspect of 

the training set that captures the ability of data to represent psychophysiological measurement as 

it would occur under real-world conditions.  

A number of classification techniques have been utilised in the context of both BCI 

applications and the biocybernetic loop.  The first category of classifiers may be described as 

generative and are designed to compute the likelihood of each class.  This generative class 

includes Bayesian network approaches, which is a probabilistic model that uses a “maximum a 

posteriori” rule to assign a vector to the class with the highest posteriori probability. Static 

classifiers, such as artificial neural nets (ANN), represent a sophisticated approach to network-

based classification.  ANNs are arranged in layers (e.g., multilayered perceptron) where each 

node or neuron receives a number of inputs in order to calculate the cumulative activation of that 

particular neuron, this output is relayed to the next layer of the network and so on. One 

disadvantage of the ANN approach is that the network is very sensitive to overtraining, 

particularly with noisy psychophysiological data as a set of inputs.  The static approach to 

classification is contrasted with dynamic techniques, such as Hidden Markov Models (HMM), 

which incorporate temporal features into the process of discrimination.  HMM have evolved to 

calculate the probability of observing a particular sequence of feature vectors; this approach has 

been adopted in some BCI systems but is rarely used for biocybernetic adaptation. 
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Nearest-neighbour approaches fall into the category of discriminative classifiers where 

the distance (e.g. Euclidean) between each input and a feature vector is calculated based upon the 

training space.  Support Vector Machines (SVMs) represent another form of discriminative 

classifier and has been widely used in both BCI and biocybernetic systems.  SVMs are capable 

of creating nonlinear decision boundaries and whilst they may be slow (computationally), they 

have good generalisation and tend to be less sensitive to overtraining as well as the curse of 

dimensionality.  Stable classifiers, such as Linear Discriminant Analysis (LDA), are 

characterised by their relative simplicity and insensitivity to small variations in the training data.  

This is an advantage in the sense that the classification system is sensitive to gross rather 

nuanced trends in the training data; however, as the name suggests, LDA performs poorly where 

the classification is based on complex (i.e., nonlinear) boundaries in contrast to SVMs or ANNs. 

A number of reviews⁠ (Lotte et al., 2007; Novak, Mihelj, & Munih, 2012) have surveyed 

the prevalence of different classification techniques in the development of different categories of 

physiological computing systems.  With respect to synchronous BCI, classification is mainly 

characterised by the use of SVMs, dynamic classification (HMM) and ensemble classification, 

particularly majority voting and boosting.  The application of ANN to classification in BCI 

accounted for approximately a quarter of those systems in the review.  Those systems designed 

for biocybernetic adaptation were characterised by a mixture of SVM, LDA and Classification 

Trees, although a small number did use an ANN approach. 

The process of measurement and classification is fundamental to the integrity of the 

biocybernetic loop.  The challenge for designers is to create dynamic user representations that: 

(a) are scientifically sound, (b) rely on comfortable and non-intrusive sensors that are capable of 
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delivering good signal quality in everyday settings, and (c) can be classified into different 

categories within an adaptive controller in order to drive adaptation at the interface. 

 

3. INTELLIGENT ADAPTATION  

The prioritisation of current research on signal analysis and classification is 

understandable because the system cannot work without inputs and the act of classification is 

inextricably bound up with the quality of signal input.  But the designer must make equally 

important decisions about how those categories are translated into a repertoire of software 

responses because action at the interface will ultimately determine user experience.  

We must acknowledge the enormous scope for error that exists within the biocybernetic 

loop when data are collected in the field, or to phrase the statement in more precise terms, there 

is enormous scope for user perception of system error.  A misclassification within the context of 

BCI interaction yields a response that is unintentional and obvious to the user.  Spotting an error 

during interaction with a biocybernetic system is significantly more difficult for the user.   

Biocybernetic adaptation faces the significant hurdle of creating adaptation at the interface that 

resonates with the dynamic experience of the user.  For systems designed to provide input 

control, the primary design issue is how to match the intentions with events at the interface 

within a small time window.  For biocybernetic systems, the capacity of the adaptive loop to 

synchronise with user experience is complicated by the complexity, spontaneity and subjectivity 

of the latter.   

The quality of adaptive response may be characterised by its accuracy, sensitivity and 

intuitiveness from the perspective of the user.  The accuracy of a physiological computing 

system is an obvious starting point for this discussion.  It is reasonable to assume that an accurate 
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response is desirable from the perspective of the user, but what does that mean? Accuracy is 

defined as matching a predefined pattern of physiological response with a specific command 

from the functional vocabulary.  If the system selects a response based on an erroneous act of 

classification, it is an error of commission and will be perceived as invalid by the user.  

However, inaccurate systems are also guilty of errors of omission - when the user expects a 

response from the system but does not receive one. It is important that both categories are 

minimised, errors do not just annoy and inconvenience the user but fundamentally undermine the 

development of trust in the technology. 

Consider the relationship between the size of the functional vocabulary (the repertoire of 

possible system responses) and the criterion of accuracy.  It could be argued that increasing 

functional vocabulary is beneficial for user experience, making a greater range of adaptive 

options available to the system should lead to a nuanced response at the interface that increases 

the perceived “intelligence” of the system as a whole.  However, probability dictates that the 

errors of commission become increasingly frequent as items are added to the functional 

vocabulary and the designer of the system faces a trade-off between accuracy and adaptive 

capacity.  In order to resolve this dilemma, the designer ought to consider the minimum number 

of adaptive responses necessary for the system to meet its operational requirements.  It is 

reasonable to assume that accuracy will be maximised for a system with minimal functionality.  

In some cases, a physiological computing system may be capable of operating quite effectively 

with only two or three types of adaptive responses; much depends on the type of interactive 

experience that the system is designed to deliver.   

If accuracy is concerned with the design of adaptive systems where responses are tailored 

to the limits of psychophysiological classification, the sensitivity of the system response 
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describes the temporal relationship between physiological activity and events at the interface.  

Many users develop an intuitive heuristic through interaction with input control devices so that x 

amount of mouse movement is equated with y amount of cursor control on the screen.  The same 

logic applies to BCI and eye control of cursors.  The temporal relationship between changes in 

psychophysiological activity and events at the interface is described as gradation sensitivity.  

There are two aspects of this relationship: proportion and dynamics.  In its simplest form, a small 

change in electrocortical activity will cause a small movement in a desired direction, e.g., an 

increase of EEG activity by one standard unit at a sensorimotor site causes an avatar to move 

forward 1m in virtual space, and larger changes in the EEG cause greater movement and so on.  

However, the ratio between signal and its output at the interface may be designed in different 

proportions, hence a 2:1 relationship may mean that avatar moves forward 1m in virtual space 

whenever sensorimotor activity increases by two standard units.   

Gradation sensitivity can be weighted in different ways in order to create the largest 

amount of change at the interface for different levels of psychophysiological activity.  The 

relationship between psychophysiological change and events at the interface may be conceived 

as an extension to Fitts Law (Fitts, 1954) where covert responses from the central nervous 

system are mapped onto the biocybernetic control loop.  For the designer, creative adjustment of 

gradation sensitivity represents one mechanism to reinforce physiological self-regulation in order 

to improve the productivity and quality of the human-computer interaction.   

The temporal dynamics between psychophysiology and software are perhaps less 

important in the case of biocybernetic adaptation.  The sensitivity of biocybernetic adaptation is 

based mainly upon a perception of whether the system response is appropriate to a specific 

situation.  The first criterion concerns the ability of the system to deliver the right response.  If 
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the user is extremely frustrated or very bored, there is an inherent expectation that a 

physiological computing system will intervene.  If no response is forthcoming, the user perceives 

an error of omission.  If the system makes an inappropriate response, e.g., offering help when the 

user is calm and relaxed, the insensitivity of the system revolves around errors of commission.  

Both categories of error create unique forms of insensitivity, both of which are equally damaging 

to the user experience.   

The perceived accuracy from the perspective of the user is an important determinant of 

the quality of the interaction.  A system that is perceived to be accurate in the short-term will 

create a positive impression that encourages further use.   However, perceived accuracy and trust 

can also be affected by bias or be linked to the cost of errors to the user, i.e., errors may be more 

or less costly depending on the degree of annoyance or inconvenience experienced by the user as 

a direct result.  The question of what is an acceptable level of accuracy for a physiological 

computing system has been addressed by several studies.  Some simulated various levels of 

accuracy with respect to control of an input device and task difficulty respectively in order to 

explore levels of user acceptance and tolerance for system error (Novak, Nagle, & Riener, 2014; 

Van de Laar, Bos Plass-Oude, Reuderink, Poels, & Nijholt, 2013).  One recent study assessed the 

ability of users to assess the classification accuracy of a physiological computing system 

designed to classify interest levels (high vs. low) in a series of movie trailers (Fairclough, 

Karran, & Gilleade, 2015).  The authors reported that participants tended to over-estimate a 

mathematical accuracy score of 0.82-0.91 by approximately 5% - hence participants may be able 

to accurately assess classification accuracy of a system if they are provided with overt feedback 

(as they were in this study). 
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One design option to deal with the inherent uncertainty of matching adaptive responses to 

dynamic user states is to vary the autonomy of the system.  It is generally assumed that triggers 

from the biocybernetic loop will action events at the interface in an all-or-nothing fashion 

without any input from the user.  But total automation is not the only option available to the 

design of a physiological computing system.  The Levels of Automation analysis (LOA) 

(Sheridan & Parasuraman, 2006) represents system automation as existing on a continuum where 

responses vary from 100% manual to 100% automated.  There are a number of hybrid forms on 

this continuum, such as automated prompts (e.g., would you like the game to increase difficulty 

now?) and automated cues (e.g., highlighting appropriate functions or areas of the screen).  

Adaptive technology based on physiological computing could adjust the autonomy of responses 

at the interface based upon the level of confidence underpinning the episode of classification.  If 

the system is highly confident, the response occurs at the interface without any consultation with 

the user.  If confidence is not as high, the system may prompt the user for confirmation before 

taking action.  Whilst biocybernetic adaptation is based upon correct classification, it is obvious 

that instances of greater physiological reactivity are easier to recognise than smaller ones.  The 

physiological computing system would always identify a transition from low to high frustration 

but a change from low to medium frustration is harder to detect.  Therefore, the system may 

again adopt a softer approach to automation, using prompts or cues, when the distance between 

categories is low and ambiguity of classification is high.  This design option provides some 

insurance against both errors of commission and omission because the system makes a definite 

response but requires clarification from the user to resolve any uncertainty. 

When a person interacts with a physiological computing system, the technology actions a 

series of adaptations in response to ‘live’ changes in brain activity or psychophysiology.  
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Intuition describes the intelligibility of those adaptations from the perspective of the user.  This 

particular criterion focuses on the perceived meaning of adaptation at the interface as opposed to 

the process of measurement and classification supporting those adaptations.  There is an analogy 

between adaptive interaction and a spoken conversation.  Both activities are characterised in 

terms of turn-taking and mutual adaptation.  Conversation is initiated in the biocybernetic loop 

when the user exhibits a particular pattern of psychophysiological activity that triggers an 

adaptive response.  The interpretation of the system is communicated implicitly to the user via 

the specifics of adaptation at the interface: the presentation of calming music tacitly 

communicates an interpretation of stress or anxiety on behalf of the system, an assessment of the 

intention to move forward produces forward movement of an avatar in virtual space.  This 

intuitive element informs users’ understanding of how the system functions as an active agent 

working to a predetermined rationale. In order to engender user trust, it is important that the 

response from the system is understood with sufficient clarity to both inform and shape the 

human-computer interaction (Miller, 2005).   

From the perspective of the user, intuition represents the extent to which an adaptation 

reflects feelings, thoughts and intentions that are active in consciousness at that particular time.  

The informative content of system adaptation may simply reinforce what is already known, when 

an angry user experiences a calming response from the system, feedback is simply confirming 

the contents of awareness. Alternatively, an adaptive response may grant insight into 

unacknowledged feelings or thoughts and the presentation of a calming response can increase 

awareness of increased frustration (Picard et al., 2004).  A second-order aspect of intuition 

concerns users’ understanding or assessment of the rationale underlying the adaptive response 

from the system.  The detection of frustration may prompt a number of adaptive responses: offer 



PHYSIOLOGICAL COMPUTING   25 

help, suggest a rest break, play calming music, recommend a number of breathing exercises.  

Each adaptive response is unique but the underlying rationale is consistent and it is important for 

this rationale (e.g., to counteract frustration) to be clearly communicated to the user.  Systems 

associated with biocybernetic adaptation are designed with a distinct rationale in mind: to reduce 

mental workload, to promote safety, to help the user, to challenge the player, etc.  An 

understanding of this rationale will hopefully improve the intelligibility of system behaviour.  

The criterion of intuitiveness also concerns the quality of the adaptive response as 

assessed by the user.  If the system makes a response that accurately reflects the current state of 

the user, correct classification will count for little if the actual adaptation has no utility from the 

perspective of the user.  This aspect of intuition concerns the extent to which an adaptation meets 

the needs and desires of the user.  If the user is frustrated because they are behind schedule, an 

automated request to take a rest break is unlikely to be welcomed or be perceived as particularly 

helpful.  There is a degree of overlap between these aspects as an intuitive system response is 

accurate, comprehensible, timely and useful from the perspective of the user. 

The informative content of the adaptive response provides an explicit cue to the diagnosis 

of the user state.  If the response from the system is opaque, the user may assess the system to be 

inert or unintelligible, both of which are undesirable. The informative element of adaptation is 

self-evident for input control systems where intention and feedback at the interface are closely 

coupled.  For biocybernetic adaptation, the informative content of the adaptive response may be 

explicit and obvious to the user or implicit in the sense that the user may or may not notice a 

change at the interface.  Explicit feedback concerns those categories of the adaptive response that 

are impossible for the user to miss: the appearance of an avatar offering help, an on-screen 

recommendation to take a break.  This feedback represents an unambiguous statement of the 
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design rationale underpinning the biocybernetic loop.  There is a risk associated with explicit 

adaptation that errors of commission are obvious to the user and only a small number of high-

profile errors are sufficient to damage trust in the system, but there are occasions, typically 

during extreme frustration or high mental workload, when the user might reasonably expect an 

explicit response from the system.  Implicit adaptation may not be noticed by the user at the 

interface and have the advantage of making errors of commission without necessarily damaging 

trust because the user may not notice the error.  The problem of implicit adaptation is that they 

may often exert a cumulative influence that takes time to achieve any tangible effect on the user.   

For example, we constructed a biocybernetic version of the game Tetris⁠ (Fairclough & 

Gilleade, 2012) where the drop speed of the blocks were adapted to changes in real-time EEG 

using tiny adjustments that were barely noticeable to the player.  The experiential effect of these 

implicit adaptations were double-edged; it took a period of several minutes for a clear trend of 

adjustment (to increase or decrease speed) to become apparent to the user and in the meantime 

the users generally perceived the system to be inert and creating errors of omission.  The 

strengths and weaknesses of explicit/implicit adaptation may be designed into the interaction by 

using implicit adaptations for small magnitudes of change in the state of the user and relying on 

explicit adaptation when extremes are detected. See Fairclough (2009) for more detail on this 

topic. 

The repertoire of adaptive responses available to the system designer is similarly finite 

but the process of design is crucial.  The designer must decide which adaptive options to include 

within the functional vocabulary of the system and which to omit.  If a specific adaptation is 

deemed worthy of inclusion, the magnitude of response or the levels of response must be clearly 
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defined.  The whole purpose of this process is the production of a system capable of intelligible 

interaction.   

 

 

4. SUMMARY 

Interaction with a physiological computing system represents one approach to the 

creation of a technology where control is achieved without touch and software responds to the 

psychological context of the user.  The closed-loop logic of these systems describes how raw 

physiological data from the body and brain is translated into a series of dynamic control inputs 

and changes at the interface, which are conveyed directly to the user.  This process of translation 

from raw physiology to input control contains a number of steps with significant hurdles, such 

as: the design of wearable sensors that deliver high quality data in an unobtrusive way, the 

process of inferring psychological states from physiological data in everyday life, the detection 

of artifacts and classification of data in real-time.  These challenges of measurement and signal 

processing in this field are substantial but the design of the adaptive controller is central to the 

user experience.  The adaptive controller represents the rationale of the closed-loop, which 

describes the way in which data is translated into adaptations and responses at the interface with 

the user.  This component remains relatively unexplored compared to signal processing and 

classification, but it is the efficacy of the adaptive controller that will largely determine the user 

experience and the degree of ‘intelligence’ displayed by the system. 
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