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Abstract

This chapter describes the physiological computing paradigm where 
electrophysiological changes from the human nervous system are used to interface 
with a computer system in real time.  Physiological computing systems are 
categorized into five categories: muscle interfaces, brain-computer interfaces, 
biofeedback, biocybernetic adaptation and ambulatory monitoring.  The 
differences and similarities of each system are described.  The chapter also 
discusses a number of fundamental issues for the design of physiological 
computing system, these include: the inference between physiology and 
behaviour, how the system represents behaviour, the concept of the biocybernetic 
control loop and ethical issues.

1.  Introduction

Communication with computers is accomplished via a standard array of input 
devices requiring stereotypical actions such as key pressing, pointing and clicking.  
At the time of writing, the standard combination of keyboard/mouse is starting to 
yield to intuitive physical interfaces (Merrill & Maes, 2007), for instance, the 
Nintendo Wii and forthcoming “whole-body” interfaces such as Microsoft’s 
Project Natal.  Traditionally the physicality of human-computer interaction (HCI) 
has been subservient to the requirements of the input devices.  This convention is 
currently in reversal as computers learn to understand the signs, symbols and 
gestures with which we physically express ourselves to other people.  If users can 



communicate with technology using overt but natural hand gestures, the next step 
is for computers to recognise other forms of spontaneous human-human 
interaction, such as eye gaze (Wachsmuth, Wrede, & Hanheide, 2007), facial 
expressions (Bartlett, Littlewort, Fasel, & Morvellan, 2003)  and postural changes 
(Ahn, Teeters, Wang, Breazeal, & Picard, 2007).  These categories of expression 
involve subtle  changes that are not always under conscious control.  In  one sense, 
these kinds of signals represent a more intuitive form of HCI compared to overt 
gesture because a person may communicate her needs to a device with very little 
intentionality.  However, changes in facial expression or body posture remain 
overt and discernible by close visual observation.  This progression of intuitive 
body interfaces reaches a natural conclusion when the user communicates with a 
computer system via physiological changes that occur under the skin.  The body 
emits a wide array of bio-electrical signals, from increased muscle tension to 
changes in heart rate to tiny fluctuations in the electrical activity of the brain.  
These signals represent internal channels of communication between various 
components of human central nervous systems.  These signals may also be used to 
infer behavioural states, such as exertion during exercise, but their real potential to 
innovate HCI lies in the ability of these measures to capture psychological 
processes and other dimensions that remain covert and imperceptible to the 
observer.  

There is a long literature in the physiological computing tradition inspired by  
work on affective computing (Picard, 1997), specifically the use of 
psychophysiology to discern different emotional states and particularly those 
negative states such as frustration (Kapoor, Burleson, & Picard, 2007) that both 
designer and user wish to minimise or avoid.  A parallel strand of human factors 
research (Pope, Bogart, & Bartolome, 1995; Prinzel, Parasuraman, et al., 2003)  
has focused on the detection of mental engagement using electroencephalographic 
(EEG) measures of brain activity.  The context for this research is the development 
of safe and efficient cockpit automation; see Scerbo, Freeman, & Mikulka (2003) 
for summary of automation work and Rani & Sarkar (2007) for similar approach 
to interaction with robots.  The same approach was adopted to monitor the mental 
workload of an operator in order to avoid peaks (i.e. overload) that may jeopardise 
safe performance (Wilson & Russell, 2003; 2007).  In these examples, 
psychophysiology is used to capture levels of cognitive processing rather than 
emotional states.  Psychophysiology may also be used to quantify those 
motivational states underlying the experience of entertainment technology 
(Mandryk, Inkpen, & Calvert, 2006; Yannakakis, Hallam, & Hautop Lund, 2007).  
This application promotes the concept of adaptive computer games where 
software responds to the state of the player in order to challenge or help the 
individual as appropriate (Dekker & Champion, 2007; Fairclough, 2007; Gilleade 



& Dix, 2004).  Specific changes in psychophysiology may also be used as an 
intentional input control to a computer system, Brain-Computer Interfaces (BCI) 
(Allison, Wolpaw, & Wolpaw, 2007; Wolpaw, Birbaumer, McFarland, 
Pfurtscheller, & Vaughan, 2002)  involve the production of volitional changes in 
EEG activity in order to direct a cursor and make selections in a manner similar to 
mouse movement or a key press.  

Psychophysiology has the potential to quantify different psychological states 
(e.g. happiness vs. frustration), to index state changes along a psychological 
continuum (e.g. low vs. high frustration)  and to function as a proxy for input 
control (e.g. a BCI).   Psychophysiological data may also be used to identify stable 
personality traits, such as motivational tendencies (Coan & Allen, 2003) and 
predispositions related to health, such as stress reactivity (Cacioppo, et al., 1998).  
The diversity and utility of psychophysiological monitoring provides ample 
opportunity to innovate HCI but what kinds of benefits will be delivered by a new 
generation of physiological computing systems?  The first advantage is 
conceptual, contemporary human-computer communication has been described 
asymmetrical in the sense that the user can obtain a lot of information about the 
system (e.g. hard disk space, download speed, memory use) while the computer is 
essentially ‘blind’ to the psychological status of the user (Hettinger, Branco, 
Encarnaco, & Bonato, 2003).  The physiological computing paradigm provides 
one route to a symmetrical HCI where both human and computer are capable of 
“reading” the status of the other without the requirement for the user to produce 
explicit cues; this symmetrical type of HCI can be described as a dialogue as 
opposed to the asymmetrical variety that corresponds to two monologues 
(Norman, 2007).  One consequence of symmetrical HCI is that technology has the 
opportunity to demonstrate “intuition” or “intelligence” without any need to 
overtly consult the user.  For example, a physiological computing system may 
offer help and advice based upon a psychophysiological diagnosis of frustration - 
or make a computer game more challenging if a state of boredom is detected.  
Given that the next generation of ‘smart’ technology will be characterised by 
qualities such as increased autonomy and adaptive capability (Norman, 2007), 
future systems must be capable of responding proactively and implicitly to support 
human activity in the workplace and the home, e.g. ambient intelligence (Aarts, 
2004).  As technology develops in this direction, the interaction between users and 
machines will shift from a master-slave dyad towards the kind of collaborative, 
symbiotic relationship (Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004) 
that requires the computer to extend awareness of the user in real-time.  

Each interaction between user and computer is unique at some level, the 
precise dynamic of the HCI is influenced by a wide range of variables originating 
from the individual user, the status of the system or the environment.  The purpose 



of dialogue design is to create an optimal interface in order to maximise 
performance efficiency or safety, which represents a tacit attempt to “standardise” 
the dynamic of the HCI.  Similarly, human factors and ergonomics research has 
focused on the optimisation of HCI for a generic ‘everyman’ user.  Physiological 
computing represents a challenge to the concepts of a standard interaction or a 
standard user.  Interaction with a symmetrical physiological computing system 
incorporates a reflexive, improvisatory element as both user and system respond to 
feedback from the other in real-time.  There may be benefits associated with this 
real-time, dynamic adaptation such as the process of individuation (Hancock, 
Pepe, & Murphy, 2005) where the precise response of the system is tailored to the 
unique skills and preferences of each user, e.g. (Rashidi & Cook, in press).  As the 
individual develops an accurate model of system contingencies and competencies 
and vice versa, human-computer coordination should grow increasingly fluid and 
efficient.  For example, certain parameters of the system (e.g. the interface) may 
change as the person develops from novice to experienced user, e.g. acting with 
greater autonomy, reducing the frequency of explicit feedback.  This reciprocal 
human-machine coupling is characterised as a mutual process of co-evolution with 
similarities to the development of human-human relationships in teamwork 
(Klein, et al., 2004).  Central to this idealised interaction is the need to 
synchronise users’ models of system functionality, performance characteristics etc. 
with the model of user generated by the computer system with respect to 
preferences, task context and task environment.  In this way, physiological 
computing shifts the dynamic of the interaction from the generic to the specific 
attributes of the user.  This shift is “directed to explore ways through which each 
and every individual can customize his or her tools to optimize the pleasure and 
efficiency of his or her personal interaction” (Hancock, et al., 2005) (p. 12).

Traditional input devices required a desktop space for keyboard or mouse that 
effectively tied HCI to a specific “office” environment.  The advent of mobile 
communication devices and lightweight notebooks/laptops has freed the user from 
the desktop but not from the ubiquity of the keyboard or touchpad.  The 
development of unintrusive, wearable sensors (Baber, Haniff, & Woolley, 1999; 
Picard & Healey, 1997; Teller, 2004)  offers an opportunity for users to 
communicate with ubiquitous technology without any overt input device.  A 
psychophysiological representation of the user state could be collected 
unobtrusively and relayed to personal devices located on the person or elsewhere.  
Unobtrusive monitoring of physiology also provides a means for users to overtly 
communicate with computers whilst on the move or away from a desktop. The 
development of muscle-computer interfaces (Saponas, Tan, Morris, & 
Balakrishnan, 2008) allows finger movements to be monitored and distinguished 
on potentially any surface in order to provide overt input to a device.  Data 



collection from wearable sensors could be used to monitor health and develop 
telemedicine-related applications (Kosmack Vaara, Hook, & Tholander, 2009; 
Morris & Guilak, 2009) or to adapt technology in specific ways, e.g. if the user is 
asleep, switch all messages to voicemail.  With respect to system adaptation, this 
“subconscious” HCI (i.e. when a device adapts to changes in user state without 
any awareness on the part of the user) could be very useful when the user is eyes- 
or hands-busy, such as driving  a car or playing a computer game.  This utilisation 
of the approach in this scenario allows physiological computing to extend the 
communication bandwidth of the user.  

The potential benefits of physiological computing are counteracted by 
significant risks associated with the approach.  The inference from physiological 
change to psychological state or behaviour or intention is not straightforward 
(Cacioppo, Tassinary, & Berntson, 2000).  Much of the work on the psycho-
physiological inference (i.e. the way in which psychological significance is 
attached to patterns of physiological activity) has been conducted under controlled 
laboratory conditions and there is a question mark over the robustness of this 
inference in the field, i.e. psychophysiological changes may to be small and 
obscured by gross physical activity or environmental factors such as temperature.  
It is important that physiological computing applications are based upon a robust 
and reliable psychophysiological inference in order to work well.  The 
physiological computing paradigm has the potential to greatly increase the 
complexity of the HCI which may be a risk in itself.  If a physiological computing 
application adapts functionality or interface features in response to changes in the 
state of the user, this dynamic adaptation may be double-edged.  It is hoped that 
this complexity may be harnessed to improve the quality of the HCI in terms of 
the degree of “intelligence” or “anticipation” exhibited by the system.  However, 
the relationship between system complexity and compatibility with the user is 
often negative, i.e. the higher the complexity of the system, the lower the level of 
compatibility (Karwowski, 2000).  Therefore, the complex interaction dynamic 
introduced by physiological computing devices has the potential to dramatically 
degrade system usability by increasing the degree of confusion or uncertainty on 
the part of the user.  Finally, physiological computing approaches are designed to 
use physiology as a markers of what are often private, personal experiences.  
Physiological computing technologies cross the boundary between overt and 
covert expression, in some cases capturing subtle psychological changes of which 
the users may be unaware.  This kind of technology represents a threat to privacy 
both in the sense of data security and in terms of feedback at the interface in a 
public space.

The aim of the current chapter is to describe different categories of 
physiological computing systems, to understand similarities and differences 



between each type of system, and to describe a series of fundamental issues that 
are relatively common to all varieties of physiological computing applications.

2.   Categories of Physiological Computing

A physiological computing system is defined as a category of technology where 
electrophysiological data recorded directly from the central nervous system or 
muscle activity are used to interface with a computing device.  This broad 
grouping covers a range of existing system concepts, such as Brain-Computer 
Interfaces (Allison, et al., 2007), affective computing (Picard, 1997) and 
ambulatory monitoring (Ebner-Priemer & Trill, 2009).  This definition excludes 
systems that classify behavioural change based on automated analysis of gestures, 
posture, facial expression or vocal characteristics.  In some cases, this distinction 
merely refers to the method of measurement rather than the data points 
themselves; for example, vertical and horizontal eye movement may be measured 
directly from the musculature of the eye via the electrooculogram (EOG) or 
detected remotely via eye monitoring technology where x and y coordinates of 
gaze position are inferred from tracking the movement of pupil.

Figure 1 (below) describes a range of physiological computing systems that are 
compared and contrasted with overt input control derived from conventional 
keyboard/mouse or gesture-based control [1].  The second category of technology 
describes those physiological computing concepts where input control is based 
upon muscular activity [2].  These systems include cursor control using eye 
movements (Tecce, Gips, Olivieri, Pok, & Consiglio, 1998) or gaze monitoring 
(Chin, Barreto, Cremades, & Adjouadi, 2008) or eye blink activity (Grauman, 
Betke, Gips, & Bradski, 2001).  Muscle interfaces have traditionally been 
explored to offer alternative means of input control for the people with disabilities 
and the elderly (Murata, 2006).  The same “muscle-interface” approach using 
electromyographic (EMG) activity has been used to capture different hand 
gestures by monitoring the muscles of the forearm (Saponas, et al., 2008), facial 
expressions (Huang, Chen, & Chung, 2006)  and subvocal speech (Naik, Kumar, & 
Arjunan, 2008).  Brain-Computer Interfaces (BCI) [3] are perhaps the best known 
variety of physiological computing system.  These systems were originally 
developed for users with profound disabilities (Allison, et al., 2007; Wolpaw, et 
al., 2002) and indexed significant changes in the electrical activity of the cortex 
via the electroencephalogram (EEG), e.g. evoked-potentials (ERPs), steady state 
visual evoked potentials (SSVEPs).  Several arguments have been forwarded to 
promote the use of BCI by healthy users (Allison, Graimann, & Graser, 2007), 
such as novelty or to offer an alternative mode of input for the ‘hands-busy’ 



operator.  Zander & Jatzev (2009) distinguished between active BCI systems that 
rely on direct EEG correlates of intended action (e.g. changes in the 
somatosensory cortex in response to motor imagery) and reactive BCI where EEG 
activity is not directly associated with output control (e.g. use of P300 ERP 
amplitude to a flashing array of letters to enable alphanumeric input).  
Biofeedback systems [4] represent the oldest form of physiological computing.  
The purpose of this technology is to represent the physiological activity of the 
body in order to promote improved self-regulation (Schwartz & Andrasik, 2003).  
This approach has been applied to a range of conditions, such as asthma, 
migraines, attentional deficit disorder and as relaxation therapy to treat anxiety-
related disorders and hypertension.  Biofeedback therapies are based on 
monitoring the cardiovascular system (e.g. heart rate, blood pressure), respiratory 
variables (e.g. breathing rate, depth of respiration), EMG activity, and EEG (i.e. 
neurofeedback) and training users to develop a degree of volitional control over 
displayed physiological activity.  The concept of biocybernetic adaptation [5]  was 
developed by Pope, et al. (1995) to describe a adaptive computer system that 
responded to changes in EEG activity by controlling provision of system 
automation (Freeman, Mikulka, Scerbo, & Scott, 2004; Prinzel, Freeman, Scerbo, 
Mikulka, & Pope, 2003).  This types of system monitor naturalistic changes in the 
psychological state of the person, which may be related to variations in cognitive 
workload (Wilson & Russell, 2003) or motivation and emotion (Mandryk & 
Atkins, 2007; Picard, Vyzas, & Healey, 2001).  This approach has been termed 
“wiretapping” (Wolpaw, et al., 2000) or passive BCI (Zander & Jatzev, 2009).  In 
essence, the psychological status of the user is monitored in order to trigger 
software adaptation that is both timely and intuitive (Fairclough, 2009).  The final 
category of technology concerns the use of unobtrusive wearable sensors that 
monitor physiological activity over a sustained period of days or months.  These 
ambulatory systems [6] may be used to monitor emotional changes (Picard & 
Healey, 1997; Teller, 2004) or health-related variables (McFetridge-Durdle, 
Routledge, Parry, Dean, & Tucker, 2008; Milenkovic, Otto, & Jovanov, 2006).  
These systems may trigger feedback to the individual from a mobile device when 
“unhealthy” changes are detected (Morris, 2007) or the person may review 
personal data on a retrospective basis (Kosmack Vaara, et al., 2009).  



Figure 1.  Five categories of physiological computing systems

The biocybernetic loop is a core concept for all physiological computing 
systems (Fairclough & Venables, 2004; Pope, et al., 1995; Prinzel, Freeman, 
Scerbo, Mikulka, & Pope, 2000) with the exception of some forms of ambulatory 
monitoring [6].  This loop corresponds to a basic translational module that 
transforms physiological data into a form of computer control input in real-time. 
The loop has at least three distinct stages: (1) signal acquisition, filtering and 
digitization, (2) artifact correction and the extraction of relevant features and (3) 
the translation of an attenuated signal into output for computer control.  The 
precise form of the mapping between physiological change and control output will 
differ from system to system; in some cases, it is relatively literal and 
representative, e.g. the relationship between eye movements and x,y coordinates 
in space.  Other systems involve a symbolic mapping where physiological activity 
is converted into a categorization scheme that has psychological meaning.  For 
example, the relationship between autonomic activity and emotional states falls 
into this category (Mandryk & Atkins, 2007), similarly the mapping between EEG 
activity and mental workload (Gevins, et al., 1998; Grimes, Tan, Hudson, Shenoy, 
& Rao, 2008)  or the way in which respiratory data may be represented as sound or 
visual animation via a biofeedback interface.  These mappings have been 
developed primarily to produce one-dimensional output, although there are two-
dimensional examples of both BCI (Wolpaw & McFarland, 2004) and 
biocybernetic adaptation (Rani, Sims, Brackin, & Sarkar, 2002).  Sensitivity 
gradation is a common issue for many biocybernetic loops.  Some forms of BCI 
and all forms of biocybernetic adaptation rely on an attenuated signal for output, 
for example, a steady and gradual increase over a specified time window.  In the 
case of ambulatory monitoring, some systems alert the user to “unhealthy” 
physiological activity use the same kind of sensitivity gradation to trigger an alert 
or diagnosis.  Those ambulatory systems that do not incorporate a biocybernetic 



loop are those that rely exclusively on retrospective data, such as the affective 
diary concept (Kosmack Vaara, et al., 2009); in this case, real-time data is simply 
acquired, digitised, analysed and conveyed to the user in various formats without 
any translation into computer control.

The five categories of physiological computing system illustrated in Figure 1 
have been arranged to emphasise important differences and similarities.  Like 
conventional input via keyboard and mouse, it is argued that muscle interfaces 
involving gestures, facial expressions or eye movements are relatively overt and 
visible to an observer.  The remaining systems to the right of the diagram 
communicate with computer technology via covert changes in physiological 
activity.     When a user communicates with a computer via keyboard/mouse [1], 
muscle interface [2] or BCI [3], we assume these inputs are intentional in the 
sense that the user wishes to achieve a specific action.  The use of a Biofeedback 
system [4] is also volitional in the sense that the person uses the interface in order 
to manipulate or self-regulate a physiological response.  By contrast, 
Biocybernetic Adaptation [5] involves monitoring spontaneous physiological 
activity in order to represent the state of the user with respect to a specific 
psychological dimension, such as emotion or cognitive workload.  This is an 
unintentional process during which the user essentially remains passive 
(Fairclough, 2007, 2008).  The same is true of ambulatory monitoring systems [6] 
that conform to the same dynamic of user passivity.  Muscle Interfaces [2], BCIs 
[3] and biofeedback [4]  all operate with continuous feedback.  Both Muscle 
Interfaces and BCIs are analogous to command inputs such as keystrokes, discrete 
gestures or mouse movements; these devices require continuous feedback in order 
to function.  Biofeedback systems also rely on continuous feedback to provide 
users with the high-fidelity of information necessary to manipulate the activity of 
the central nervous system.  In this case, the computer interface is simply a 
conduit that displays physiological activity in an accessible form for the user.  
Those physiological computing systems described as Biocybernetic Adaptation [5] 
rely on a different dynamic where feedback may be presented in a discrete form.  
For example, adaptive automation systems may signal a consistent trend, such as 
increased task engagement over a period of seconds or minutes, by activating an 
auto-pilot facility (Prinzel, Pope, & Freeman, 2002); similarly, a computer 
learning environment could signal the detection of frustration by offering help or 
assistance to the user (Burleson & Picard, 2004; Gilleade, Dix, & Allanson, 2005).  
The contingencies underlying this discrete feedback may not always be 
transparent to the user; in addition, discrete feedback may be delayed in the sense 
that it represents a retrospective trend.  Ambulatory Monitoring systems [6] are 
capable of delivering relatively instant feedback or reflecting a data log of hours or 
days.  In the case of ambulatory systems, much depends on why these data are 



recorded.  Ambulatory recording for personal use tends to fall into two categories: 
(1) quantifying physiological activity during specific activities such as jogging and 
(2) capturing physiological activity for diary or journal purposes.  In the case of 
the former, feedback is delivered in high fidelity (e.g. one reading every 15 or 
30sec), whereas journal monitoring may aggregate data over longer time windows 
(e.g. one reading per hour).

The biocybernetic control loop serves a distinct purpose when physiology is 
used as an explicit channel for communication with a computing device, e.g. 
muscle interface [2], BCI [3].  In these cases, physiological activity is translated 
into analogues of distinct actions, to activate a function or identify a letter or move 
a cursor through two-dimensional space.  Biocybernetic Adaptation [5] is designed 
to mediate an implicit interaction between the status of the user and the meta-goals 
of the HCI (Fairclough, 2008).  The latter refers to the design goals of the 
technological device; in the case of an adaptive automation system, the meta-goals 
are to promote safe and efficient performance; for a computer game, the goal 
would be to entertain and engage.  Biocybernetic Adaptation [5] provides the 
opportunity for real-time adjustment during each interaction in order to reinforce 
the design goals of the technology.  Finally, there may be a requirement for 
training when physiology is used as a means of explicitly computer control.  
Muscle-based interaction [2]  may require some familiarisation as user adjust to the 
sensitivity of system response.  BCI devices [3] are often associated with a 
training regime, although there is evidence that their training requirements may 
not be particularly onerous (Guger, Edlinger, Harkam, Niedermayer, & 
Pfurtscheller, 2003).  Biofeedback systems [4] are designed as a training tool for 
self-regulation.  However, physiological computing systems that rely on implicit 
communication such as Biocybernetic Adaptation [5]  and Ambulatory Monitoring 
[6] have no training requirement from the perspective of the user. 

The continuum of physiological computing systems illustrated in Figure 1 
obscures the huge overlap between different categories.  Ambulatory monitoring 
[6] represents a common denominator for all other physiological computing 
systems, i.e. if a system records electrophysiological activity from the user, these 
data can also be used for affective diaries or health monitoring.  In addition, it is 
anticipated that wearable sensors currently associated with ambulatory monitoring 
will become the norm for all physiological computing systems in the future.  A 
biofeedback component [4] is also ubiquitous across all systems.  Users of Muscle 
Interfaces [2] and BCIs [3] rely on feedback at the interface in order to train 
themselves to produce reliable gestures or consistent changes in EEG activity.  In 
these cases, the success or failure of a desired input control represents a mode of 
biofeedback.  Biocybernetic Adaptation [5] may also include an element of 
biofeedback; these systems monitor implicit changes in psychophysiology in order 



to adapt the interface, but if these adaptations are explicit and consistently 
associated with distinct physiological changes, then changes at the interface will 
function as a form of biofeedback.  Furthermore, if the user of a Biocybernetic 
Adaptation system [5] learns how to self-regulate physiology via biofeedback [4], 
this opens up the possibility of volitional control (over physiology) to directly and 
intentionally control system adaptation; in this case, the Biocybernetic Adaptation 
system [5] may be operated in the overt, intentional mode normally used to 
characterise Muscle Interfaces [2] and BCI [3].  There are a number of system 
concepts already available that combine Ambulatory Monitoring [6] with 
Biofeedback [4]; for instance, the Home Heart system (Morris, 2007) that 
monitors stress-related cardiovascular changes and triggers a biofeedback exercise 
as a stress countermeasure.

By breaking down the distinction between different types of physiological 
computing system in Figure 1, we may also consider  hybrid systems that blend 
different modes of input control and system adaptation.  For example, it is difficult 
to imagine  BCI technology being attractive to healthy users because of its limited 
bandwidth, e.g. two degree of spatial freedom, or two-choice direct selection.  A 
hybrid system where BCI is used alongside a keyboard, mouse or console appears 
a more likely option, but the design of such a system faces two primary obstacles 
(Allison, et al., 2007): (1) assigning functionality to the BCI that is intuitive, 
complimentary and compatible with other input devices, and (2) limitations on 
human information processing in a multi-tasking framework. The multiple-
resource model (Wickens, 2002) predicts that control via BCI may distract 
attention from other input activities via two routes: sharing the same processing 
code (spatial vs. verbal) or by demanding attention at an executive or central level 
of processing.  However, there is evidence that these types of time-sharing deficits 
may be overcome by training (Allison, et al., 2007).  The combination of Muscle 
Interfaces and BCI may work well for hands-free locate-and-select activities such 
as choosing from an array of images; eye movement may be used to locate the 
desired location in space and a discrete BCI trigger from the EEG used to make a 
selection.  Biocybernetic Adaptation may be combined with either Muscle 
Interfaces or BCI because the former operate at a different level of the HCI 
(Fairclough, 2008).  A system that trained users how to operate a Muscle Interface 
or a BCI could incorporate a biocybernetic adaptive element whereby the system 
offered help or advice based on the level of stress or workload associated with the 
training programme.  Similarly, Biocybernetic Adaptation may be combined with 
conventional controls or gesture input to operate as an additional channel of 
communication between user and system.  Those physiological computing 
systems such as Biocybernetic Adaptation or Ambulatory Monitoring that 
emphasise monitoring of behavioural states could also be combined with sensors 



that detect overt changes in facial expression, posture or vocal characteristics to 
create a multi-modal representation of the user, e.g. Kapoor, et al. (2007).  

Physiological computing systems may be described along a continuum from 
overt and intentional input control with continuous feedback to covert and passive 
monitoring systems that provide feedback on a discrete basis.  There is a large 
overlap between distinct categories of physiological computing systems and 
enormous potential to use combinations or hybrid versions.

3.   Fundamental Issues

The development of physiological computing remains at an early stage and 
research efforts converge on several fundamental issues.  The purpose of this 
section is to articulate issues that have a critical bearing on the development and 
evaluation of physiological computing systems.

3.1 The Psychophysiological Inference
The complexity of the psychophysiological inference (Cacioppo & Tassinary, 

1990; Cacioppo, Tassinary, & Berntson, 2000b)  represents a significant obstacle 
for the design of physiological computing systems.  The rationale of the 
biocybernetic control loop is based on the assumption that the 
psychophysiological measure (or array of measures) is an accurate representation 
of a relevant psychological element or dimension, e.g. hand movement, 
frustration, task engagement.  This assumption is often problematic because the 
relationship between physiology and psychology is inherently complex.  Cacioppo 
and colleagues (1990; 2000)  described four possible categories of relationship 
between physiological measures and psychological elements:
· One-to-one (i.e. a physiological variable has a unique isomorphic 

relationship with a psychological or behavioural element)
· Many-to-one (i.e. two or more physiological variables are associated with 

the relevant psychological or behavioural element)
· One-to-many (i.e. a physiological variable is sensitive to one or more 

psychological or behavioural elements) 
· Many-to-many (i.e. several physiological variables is associated with 

several psychological or behavioural elements)  



The implications of this analysis for the design of physiological computing 
systems should be clear.  The one-to-many or many-to-many categories that 
dominate the research literature represent psycho-physiological links that are 
neither exclusive nor uncontaminated.  This quality is captured by the 
diagnosticity of the psychophysiological measure, i.e. the ability of the measure to 
target a specific psychological concept or behaviour and remain unaffected by 
related influences (O'Donnell & Eggemeier, 1986).  In the case of Muscle 
Interfaces, it is assumed that one-to-one mapping between physiology and desired 
output may be relatively easy to obtain, e.g. move eyes upwards to move cursor in 
desired direction.  For other systems such as BCI and particularly biocybernetic 
adaptation, finding a psychophysiological inference that is sufficiently diagnostic 
may be more problematic.  Whilst it is important to maximise the diagnosticity of 
those measures underlying a physiological computing system, it is difficult to 
translate this general requirement into a specific guideline.  Levels of diagnostic 
fidelity will vary for different systems.  The system designer must establish the 
acceptable level of diagnosticity within the specific context of the task and the 
system.  

3.2 The Representation of Behaviour
Once psychophysiological inference has been established, the designer may 

consider how specific forms of reactivity (e.g. muscle tension, ERPs) and changes 
in the psychological state of the user should be operationalised by the system.  
This is an important aspect of system design that determines:
• the transfer dynamic of how changes in muscle tension translate into 

movement of a cursor for a muscle interface
• the relationship between activity in the sensorimotor cortex and output to 

wheelchair control for a BCI
• the relationship between changes in EEG and autonomic activity and the 

triggering of adaptive strategies during biocybernetic adaptation
The biocybernetic loop encompasses the decision-making process underlying 

software adaptation.  In its simplest form, these decision-making rules may be 
expressed as simple Boolean statements; for example, IF frustration is detected 
THEN offer help.  The loop incorporates not only the decision-making rules, but 
in the case of Biocybernetic Adaptation, the psychophysiological inference 
implicit in the quantification of those trigger points used to activate the rules.  In 
our study (Fairclough, Venables, & Tattersall, 2006) for example, this information 
took the form of a linear equation to represent the state of the user, e.g. subjective 
mental effort = x1 * respiration rate – x2 * eye blink frequency + intercept, as well 
as the quantification of trigger points, e.g. IF subjective effort > y THEN adapt 
system.  Other studies have also used linear modelling techniques and more 



sophisticated machine learning approaches systems to characterise user state in 
terms of the psychophysiological response, e.g. (Liu, Rani, & Sarkar, 2005; 
Mandryk & Atkins, 2007; Rani, et al., 2002; Wilson & Russell, 2003).

The psychological state of the user has been represented as a one-dimensional 
continuum, e.g. frustration (Gilleade & Dix, 2004; Kapoor, et al., 2007; Scheirer, 
Fernandez, Klein, & Picard, 2002), anxiety (Rani, Sarkar, & Liu, 2005), task 
engagement (Prinzel, et al., 2000), mental workload (Wilson & Russell, 2007).  
Other research has elected to represent user state in terms of: distinct categories of 
emotion (Healey & Picard, 1997; Lisetti & Nasoz, 2004; Lisetti, Nasoz, LeRouge, 
Ozyer, & Alvarez, 2003), two-dimensional space of activation and valence (Kulic 
& Croft, 2005, 2006) and distinct emotional categories based upon a two-
dimensional analysis of activation and valence (Mandryk & Atkins, 2007)    As 
stated earlier, reliance on a one-dimensional representation of the user may restrict 
the range of adaptive options available to the system.  This may not be a problem 
for some systems, but complex adaptation requires a more elaborated 
representation of the user in order to extend the repertoire of adaptive responses.

Early examples of physiological computer systems will rely on one-
dimensional representations of the user, capable of relatively simple adaptive 
responses.  The full potential of the technology may only be realized when 
systems are capable of drawing from an extended repertoire of precise 
adaptations, which will require complex representations of user behaviour or state 
in order to function.

3.3 The Biocybernetic Control Loop
The design of a physiological computing system is based upon the 

biocybernetic control loop (Fairclough & Venables, 2004; Pope, et al., 1995; 
Prinzel, et al., 2000).  The biocybernetic loop defines the modus operandi of the 
system and is represented as a series of contingencies between 
psychophysiological reactivity and system responses or adaptation.  These rules 
are formulated to serve a meta-goal or series of meta-goals to provide the system 
with a tangible and objective rationale.  The meta-goals of the biocybernetic loop 
must be carefully defined and operationalised to embody generalised human 
values that protect and enfranchise the user (Hancock, 1996).     For example, the 
physiological computing system may serve a preventative meta-goal, i.e. to 
minimise any risks to the health or safety of the operator and other persons.  
Alternatively, meta-goals may be defined in a positive way that promotes 
pleasurable HCI (Hancock, et al., 2005; Helander & Tham, 2003) or states of 
active engagement assumed to be beneficial for both performance and personal 
well-being.  	





The biocybernetic loop is equipped with a repertoire of behavioural responses 
or adaptive interventions to promote the meta-goals of the system, e.g. to provide 
help, to give emotional support, to manipulate task difficulty (Gilleade, et al., 
2005).  The implementation of these interventions is controlled by the loop in 
order to ‘manage’ the psychological state of the user.  Correspondingly, the way in 
which person responds to each adaptation is how the user ‘manages’ the 
biocybernetic loop.  This is the improvisatory crux that achieves human-computer 
collaboration by having person and machine respond dynamically and reactively 
to responses from each other.  It may be useful for the loop to monitor how users 
respond to each intervention in order to individualise (Hancock, et al., 2005) and 
refine this dialogue.  This generative and recursive model of HCI emphasises the 
importance of: (a) accurately monitoring the psychological state of the user (as 
discussed in the previous sections), and (b) equipping software with a repertoire of 
adaptive responses that covers the full range of possible outcomes within the 
human-computer dialogue over a period of sustained use.  The latter point is 
particularly important for ‘future-proofing’ the physiological computing system as 
user and machine are locked into a co-evolutionary spiral of mutual adaptation 
(Fairclough, 2007).

Research into motivation for players of computer games has emphasised the 
importance of autonomy and competence (Ryan, Rigby, & Przybylski, 2006), i.e. 
choice of action, challenge and the opportunity to acquire new skills.  This kind of 
finding begs the question of whether the introduction of a biocybernetic loop, 
which ‘manages’ the HCI according to preconceived meta-goals, represents a 
threat to the autonomy and competence of the user?  Software designed to 
automatically help or manipulate task demand runs the risk of disempowerment by 
preventing excessive exposure to either success or failure.  This problem was 
articulated by Picard & Klein (2002) who used the phrase ‘computational soma’ to 
describe affective computing software that effectively diffused and neutralised 
negative emotions.  Feelings of frustration or anger serve as potent motivators 
within the context of a learning process; similarly, anxiety or fatigue are valuable 
psychological cues for the operator of a safety-critical system.  It is important that 
the sensitivity of the biocybernetic loop is engineered to prevent over-corrective 
activation and interventions are made according to a conservative regime.  In other 
words, the user should be allowed to experience a negative emotional state before 
the system responds.  This is necessary for the system to demonstrate face validity, 
but not to constrain users’ self-regulation of behaviour and mood to an excessive 
degree.

The biocybernetic loop encapsulates the values of the system and embodies a 
dynamic that promotes stable or unstable task performance.  The dynamics of the 



control loop may be alternated for certain application to avoid the placement of 
excessive constraints on user behaviour.  

3.4 Ethics and Privacy
A number of ethical issues are associated with the design and use of 

physiological computing systems.  This technology is designed to tap private 
psychophysiological events and use these data as the operational fulcrum for a 
dynamic HCI.  The ethical intention and values of the system designer are 
expressed by the meta-goals that control the biocybernetic loop (see previous 
section), but regardless of designers’ good intentions, the design of any technology 
may be subverted to undesirable ends and physiological computing systems offer 
a number of possibilities for abuse (Reynolds & Picard, 2005b).  

Invasion of privacy is one area of crucial concern for users of physiological 
computing systems.  Ironically, a technology designed to promote symmetrical 
communication between user and system creates significant potential for 
asymmetry with respect to data protection, i.e. the system may not tell the user 
where his or her data are stored and who has access to these data.  If data 
protection rights are honored by the physiological computing system, it follows 
that ownership of psychophysiological data should be retained formally and 
legally by the individual (Hancock & Szalma, 2003).  One’s own 
psychophysiological data are potentially very sensitive and access to other parties 
and outside agencies should be subject to formal consent from the user; certain 
categories of psychophysiological data may be used to detect medical conditions 
(e.g. cardiac arrhythmias, hypertension, epilepsy)  of which the individual may not 
even be aware.  The introduction of physiological computing should not provide a 
covert means of monitoring individuals for routine health problems without 
consent.  In a similar vein, Picard & Klein (2002) argued that control of the 
monitoring function used by an affective computing system should always lie with 
the user.  This is laudable but impractical for the user who wishes to benefit from 
physiological computing technology whilst enjoying private data collection.  
However, granting the user full control over the mechanics of the data collection 
process is an important means of reinforcing trust in the system.  

Kelly (2006) proposed four criteria for information exchange between 
surveillance systems and users that are relevant here:
1. The user knows exactly what information is being collected, why it is being 

collected, where these data are stored and who has access to these data.
2. The user has provided explicit or implicit consent for data collection and can 

demonstrate full knowledge of data collection.
3. The user has access to these data, the user may edit these data or use these 

data himself or herself



4. Users receive some benefit for allowing the system to collect these data (e.g. 
recommendations, filtering).

This ‘open source’ relationship between user and technology is called 
reciprocal accountability (Brin, 1999).  This relationship may be acceptable for 
users of physiological computing systems provided the apparent transparency of 
the process does not mask crucial inequalities, i.e. vague formulations of data 
rights by private companies or governments.  The provision of written consent to 
specify this relationship should allay users’ concerns and there is evidence 
(Reynolds & Picard, 2005a) to support this position.  

A second threat to privacy concerns how psychophysiological data recorded in 
real-time may be expressed at the interface, i.e. feedback at the interface on user 
state may be perceived by colleagues or other persons when the computer is 
situated in a public space.  The provision of explicit verbal messages or discrete 
text/symbolic messages in response to the detection of frustration or boredom are 
potentially embarrassing for the user in the presence of others.  The fact that 
computer systems are used in public spaces constitutes a call for discretion on the 
part of the interface design, particularly with respect to the use of auditory 
feedback.  It would also be essential to include a facility that enables users to 
disable those messages or modes of feedback that leave them susceptible to 
‘eavesdropping’ by others. 

Physiological computing systems are designed to ‘manipulate’ the state of the 
user in a benign direction via the positive meta-goals of the biocybernetic loop.  
But how do users feel about being manipulated by autonomous technology (Picard 
& Klein, 2002; Reynolds & Picard, 2005a)?  The verb ‘manipulate’ is a loaded 
term in this context as people manipulate their psychological state routinely via 
psychoactive agents (e.g. caffeine, nicotine, alcohol), leisure activities (e.g. 
exercise, playing computer games) and aesthetic pastimes (e.g. listening to music, 
watching a TV show or movie)  (Picard & Klein, 2002).  The issue here is not the 
manipulation of psychological state per se but rather who retains control over the 
process of manipulation.  When a person exercises or listens to music, they have 
full control over the duration or intensity of the experience, and may balk at the 
prospect of ceding any degree of control to autonomous technology.  These 
concerns reinforce arguments that reciprocal accountability and granting the 
individual full control over the system are essential strategies to both reassure and 
protect the user.  In addition, users need to understand how the system works so 
they are able understand the range of manipulations they may be subjected to, i.e. 
an analytic method for tuning trust in an automated system (Miller, 2005).  

Physiological computing systems have the potential to be subverted to achieve 
undesirable outcomes such as invasion of privacy and tacit manipulation of the 
user.  It is impossible to safeguard any new technology in this respect but 



provision of full transparency and reciprocal accountability drastically reduces the 
potential for abuse.  It is important that the user of a physiological computing 
system remains in full control of the process of data collection (Picard & Klein, 
2002) as this category of autonomous technology must be designed to empower 
the user at every opportunity (Hancock, 1996; Norman, 2007).

4.   Summary

The concept of physiological computing allows computer technology to 
interface directly with the human nervous system.  This innovation will allow 
users to provide direct input control to technology via specific changes in muscle 
tension and brain activity that are intentional.  Data provided by wearable sensors 
can be used to drive biocybernetic adaptation and for ambulatory monitoring of 
physiological activity.  In these cases, physiological changes are passively 
monitored and used as drivers of real-time system adaptation (biocybernetic 
adaptation)  or to mark specific patterns that  have consequences for health 
(ambulatory monitoring).  The concept of biofeedback is fundamental to all 
categories of physiological computing as users may use these systems to promote 
increased self-regulation with respect to novel input devices (muscle interfaces or 
BCI), emotional control and stress management.  Five different categories of 
physiological computing systems have been described (Muscle Interface, BCI, 
Biofeedback, Biocybernetic Adaptation, Ambulatory Monitoring)  and there is 
significant overlap between each category.  In addition, these physiological 
computing systems may be used to augment conventional input control in order to 
extend the communication bandwidth of the HCI.

The benefits of the physiological computing paradigm are counteracted by a 
number of potential risks, including systems that provide a mismatch with the 
behavioural state of the user or diminish user autonomy or represent a 
considerable threat to personal privacy.  It is argued that the sensitivity of 
physiological computing system is determined by the diagnosticity of the psycho-
physiological inference, i.e. the ability of the physiological data to consistently 
index target behaviour regardless of environmental factors or individual 
differences.  It was also proposed that the biocybernetic control loop (the process 
by which physiological changes are translated into computer control) be carefully 
designed in order to promote design goals (e.g. safety and efficiency) without 
jeopardising the primacy of user control.  The privacy of the individual is of 
paramount importance if physiological computing systems are to be acceptable to 
the public at large.  A number of security issues were discussed with reference to 



controlling access to personal data and empowering the data protection rights of 
the individual.
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