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ABSTRACT 
The biocybernetic loop describes the data processing protocol at 
the heart of all physiological computing systems.  The loop also 
encompasses the goals of the system design with respect to the 
anticipated impact of the adaptation on user behaviour.  There are 
numerous challenges facing the designer of a biocybernetic loop 
in terms of measurement, data processing and adaptive design.  
These challenges are multidisciplinary in nature spanning 
psychology and computer science.  This paper is concerned with 
the design process of the biocybernetic loop.  A number of criteria 
for an effective loop are described followed by a six-stage design 
cycle.  The challenges faced by the designer at each stage of the 
design process are exemplified with reference to a case study 
where EEG data were used to adapt a computer game. 

Categories and Subject Descriptors 
H5.2 [Information Systems]: User Interfaces; K.8.0 [General]: 
Games; J.3 [Life and Medical Sciences]   

General Terms 
Measurement, Performance, Design, Experimentation, Human 
Factors 

Keywords 
Psychophysiology, physiological computing, adaptation, games. 

1. INTRODUCTION 
Physiological computing systems receive data from the body, 
which is subsequently used to adapt the human-computer interface 
[1, 2].  This category of technology falls into a number of distinct 
groupings including:- brain-computer interfaces (BCI) [3] that use 
intentional changes in physiological activity as a form of input 
control system, and biocybernetic adaptation [4] where 
spontaneous changes in psychophysiology trigger adaptation at 
the human-computer interface.  All physiological computing 
systems are constructed upon a biocybernetic control loop where 
raw physiological data is analysed in near-real time and 
transformed into input for software control. 
This paper is concerned with the design cycle involved  in the 
development of a working biocybernetic control loop.  An early 
loop was developed at NASA where changes in electrocortical 
activity (EEG) quantified the level of task engagement exhibited 
by the operator [4, 5].  When the operator was engaged with a 
simulated aviation task, automation of joystick control was 

permitted, therefore reducing the mental workload of an alert 
person.  If the level of task engagement fell, automation was 
terminated, effectively forcing the operator to control the joystick 
manually and re-engage with the task.  This system was designed 
to manage the psychological state of the operator within 
acceptable limits. A similar type of biocybernetic control loop that 
responds to mental workload has been proposed by [6] and [7]. 
The biocybernetic loop is the elemental concept at the heart of all 
physiological computing systems. At a basic level, the loop 
describes the data processing protocol whereby live physiology is 
converted into control input for a technological system.  However, 
the design of the loop also incorporates an explicit rationale with 
specific goals, e.g. to sustain a state of engagement, to prevent 
frustration, to select a desired command; this agenda defines the 
modus operandi of the system. 
The loop is initiated by the collection of data from various 
psychophysiological sensors.  Traditionally these sensors have 
been physically connected to the user, but recent developments in 
wearable computing [8] and remote sensing [9] demonstrates the 
availability of unobtrusive monitoring.  Physiological data are 
streamed from sensors to be filtered or corrected for artifacts prior 
to detailed analysis.  These data can be subjected to a range of 
analysis techniques from simple averaging to more complex 
analyses, such as Fast Fourier Transform.  The output from 
analysis is used to trigger an adaptive response from the system, 
either by creating specific criteria or by categorizing data using  
pattern classification approaches, e.g. [10]; see [11] for review.  
The response triggered at the interface may fall into a number of 
categories; it could enable cursor control (move forward, left, 
right) or trigger specific commands (‘select’) in the case of BCI 
applications.  Adaptation may trigger a discrete event, e.g. 
provision of help information, reduction of music volume, or 
make a covert adjustment to the interface that may not be noticed 
by the user, e.g. lighting changes to a virtual environment; see [2] 
for discussion of overt and covert categories of system adaptation. 
The biocybernetic loop is designed to promote specific 
psychological states in the human operator.  These states often 
represent a positive “approach” goal, which is seen to be 
desirable, such as the promotion of relaxation or productive 
engagement with activity.  Other loops, such as the original 
version designed at NASA, are negative control loops designed to 
avoid undesirable operator states, such as disengagement from the 
task or an extremely high level of mental workload that would 
jeopardize performance quality.  It is important to recognize that 
the biocybernetic loop must be imbued with a degree of autonomy 
in order to influence the psychological state of the user in a 
prescribed fashion.  
This paper is concerned with the biocybernetic loop as the 
essential element at the heart of all physiological computing 
systems.  We wish to consider the challenge of constructing a 

 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
Conference’10, Month 1–2, 2010, City, State, Country. 
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00. 
 



biocybernetic loop that is both scientifically valid and effective 
from the perspective of user experience.  In order to elaborate on 
this challenge, we present a case study from our own work. 
2. CONSTRUCTION OF A WORKING  
BIOCYBERNETIC LOOP 
The construction of a biocybernetic control loop must be 
transparent at every stage of development.  The rationale and data 
processing protocol must be open to inspection in order to aid 
troubleshooting and build a knowledge base for future 
development.  This transparency extends to the rationale and 
scientific validation of the loop.  The goals of the loop, in terms of 
the intended effects of interaction on the human, should be clearly 
defined.  Furthermore the fundamental process of 
psychophysiological measurement/inference must have a 
documented scientific basis.   

The biocybernetic loop is a multidisciplinary construction that 
must satisfy several criteria if it is to work in a satisfactory 
fashion.  If the loop fails to achieve its intended effects on user 
experience, there are many possible causes from inappropriate 
selection of measures or insensitive categorisation of data to poor 
HCI design at the interface.  This is why transparency in the 
design cycle is so important.  In the broader context, increased 
clarity of design will consolidate shared knowledge and 
understanding as biocybernetic loops are constructed across a 
wide range of subject domains.   

The real challenge of designing a biocybernetic loop is to satisfy a 
range of criteria that span psychology, signal processing and 
computer science.  In order to examine this issue in greater detail, 
we have proposed four criteria that must be satisfied in order to 
ensure that the loop is capable of impacting on user experience in 
a sensitive and reliable fashion. 

1. Psychophysiological inference should be valid 

The complex nature of the psychophysiological inference 
(i.e. how psychological meaning is inferred from 
physiological data) has been described in detail [12].  This 
issue is highly relevant to the biocybernetic loop where 
physiological measures should correspond to specific 
psychological concepts across individuals and different 
environments.  The reliability of psychophysiological 
measures over repeated sessions is a topic that has been 
relatively under-explored, however, see [13] and [14] for 
exceptions.  It has been argued that biocybernetic loops must 
be based on valid psychophysiological inference [2], which 
may be described with reference to previous research.  If the 
measure does not capture the psychological construct with 
sufficient sensitivity and reliability, the loop will not 
influence the user state in a predictable fashion. 

2. The psychophysiological measures can deliver a 
sufficient representation of the user state. 

A valid psychophysiological inference delivers a degree of 
association between measure and construct.  These measures 
must be subsequently translated into a representation of the 
user state within the loop.  For example, we may have 
evidence that reduced alpha activity in the frontal cortex is 
related to high mental workload, but this association must be 
translated into a categorical representation of the user state 
(e.g. high/low workload) in order for the system to work.  
This second criteria contains an implication that the 
representation of user state is sufficiently detailed – but how 
can we assess the representation in this respect?  We argue 

that the sufficiency of the user representation relates directly 
to the adaptive repertoire or functional vocabulary of the 
system, i.e. the number of responses supported by the 
system.  

3. The classification of user representation is accurate 

The representation of the user must be categorised in real-
time or near-real time if the loop is to operate dynamically.  
This criterion is defined by the data processing protocol that 
converts dynamic and variable streams of physiological data 
into a representation of the user.  The first point to consider 
is the error rate of the data processing protocol, i.e. how 
many instances of target states, such as high workload or 
frustration, are missed?  How many instances of non-target 
states are misclassified?  The second point of consideration is 
related to the time window associated with the data 
sampling/processing protocol and its relationship to system 
response at the interface.  With respect to latter, the output 
from a biocybernetic loop may take the form of an adaptation 
or a form of input control.  These outputs are associated with 
a time window; for input control, this time window may be 
very short whilst response times may vary considerably in 
the case of adaptation.  Obviously the time window for data 
analysis and categorisation sets the minimum response time 
at the interface.   

4. The response at the interface has the desired effect on 
the user 

The output from the biocybernetic loop will largely 
determine the user experience and the influence of the loop. 
If interaction at the interface is poorly designed, then the 
loop will be ineffective, even if the previous three criteria 
have been satisfied.  From the perspective of design, it is 
important that the adaptive response at the interface has the 
desired effect on user state and no unintended effects.  
Therefore, if the loop is designed to enable cursor control, it 
should do exactly that; if it is designed to minimize 
frustration, a reduction of negative emotion should be a 
tangible benefit.  The user will expect the system to respond 
to changes in psychological state in a timely and intuitive 
manner, i.e. system response should be sensitive and the 
intention underlying the response should be logical from the 
users’ perspective. 

The remainder of this paper will describe six stages in the 
construction of a working biocybernetic loop that was created in 
our own laboratory.  This loop was designed to detect 
spontaneous changes in psychophysiology in order to adapt 
software in near-real time.   

3. CASE STUDY 
The case study for the construction of a biocybernetic loop is a 
physiological computing game [15-18].  This category of game is 
capable of responding to changes in the state of player and 
tailoring the gaming experience to the individual.  The obvious 
purpose of the loop in this context is to create positive gaming 
experience, i.e. to minimize sustained periods of frustration and/or 
boredom and to promote engagement/effort.   
In our case study, the loop was designed to manipulate the 
difficulty of the game in order to drive the experience of the 
player. We selected the Tetris game for the case study, our 
reasoning being that there was a relatively simple relationship 
between speed (of falling blocks) and game difficulty.    



The development of the loop is described in six stages, from the 
conceptual origins to evaluation of a working system.  Each stage 
presents specific challenges and an example is provided in our 
case study to present how we resolved those issues. 
3.1 Stage One: Conceptual Model 
The design of a biocybernetic loop generally rests on two kinds of 
conceptual model.  The first is a psychological model of user 
behaviour, these models may describe the experience/expression 
of emotions or the relationship between frustration or fatigue with 
performance quality.  These psychological models will often be 
derived from existing literature.  The second model concerns the 
rationale behind the loop itself and how the designer anticipates 
the adaptive logic of the loop will influence the behaviour of the 
user.  This first model is generic whilst the second represents a 
series of predictions for a specific usage scenario. With respect to 
the use of psychological models, it is recommended to adopt those 
models, which are (a) empirical, i.e. constructed on existing 
measures, and (b) predictive, i.e. associated with specific 
behavioural outcomes.   
One challenge for the designer is how to reconcile the precise 
design of the biocybernetic loop as defined by the second model 
with general concepts from psychology.  It is easy to describe 
those behavioural states that should be promoted or prevented by 
the loop in general terms.  The rationale for the biocybernetic loop 
always seeks to enhance the experience of interaction through the 
promotion of positive, productive states and mitigation of 
negative states from boredom to frustration.  Such labels serve 
adequately as a statement of general design goals, however, the 
biocybernetic loop requires a series of precise and objective 
formulations in order to achieve those goals.  
The first step at this conceptual stage is to define specific 
categories of user behaviour to be detected; this process sets the 
context for the adaptive logic of the system.  The designer may 
develop a scheme of desirable vs. undesirable user states; it is 
equally important to specify the adaptive repertoire of the system 
within the context of this scheme, i.e. how many states are to be 
detected and how many different responses must be supported by 
the loop.  If possible, it is sensible to assess the response rate of 
adaptation to understand how quickly the system must react. 
Example:  Our basic model was to construct a version of Tetris 
that engaged the player by controlling the drop speed of pieces to 
sustain a positive gaming experience.  The adaptive mechanic of 
the loop was straightforward but the definitions of desirable or 
undesirable states were vague and difficult to assess.   
If a biocybernetic system is designed to promote an optimal 
gaming experience, how should we characterize that state in 
psychological terms? To be fully engaged with a task to the point 
that time seems to slip away is known as the flow state [19], 
which is sometimes referred to as being in the zone [20] or total 
immersion [21].  This state is a desirable experience as the level 
of challenge is matched with player skill, therefore attention is 
focused entirely on the game to the exclusion of other forms of 
mental activity.  This type of experience not only provides an 
optimum level of challenge [22], it also avoids undesirable mental 
states (e.g. boredom) and promotes a positive emotional 
experience [23].  These kinds of psychological states represent a 
transaction between the skills of the player and the objective level 
of task demand.  Representing these states using objective 
measures (game demand) is problematic because players’ 
response to different Tetris speeds is an interaction between the 
level of skill and objective task characteristics. 

From a psychological perspective, what are the characteristics of 
an optimal gaming experience?  It is reasonable to assume that 
high levels of game demand would prompt increased mental effort 
into the game. A high level of effort is also necessary to stimulate 
skill development and there is evidence that the opportunity to 
acquire and demonstrate competence/mastery contributes to a 
positive gaming experience [24]. The relationship between effort 
investment and the task difficulty is described by motivational 
intensity model (MIM) [25]. MIM emphasizes a compensatory 
dynamic where effort is increased in response to rising demand; 
however, this relationship is nonmonotonic and includes a 
‘tipping point’ where the investment of effort and inclination to 
continue may abruptly decline due to overload and an appraisal of 
unachievable demand.  Both mental workload (the level of 
demand experienced by the player) and effort (motivation) are 
important drivers for optimal gaming experience.  Therefore, we 
adapted the MIM to create four distinct player states: boredom 
(low effort due to low demand), engagement (increasing effort in 
line with increasing demand), zone (peak effort at highest level of 
demand attainable) and overload (low effort due to excessive 
demand).  This scheme is illustrated in Figure 1. 
 

 
Figure 1.  Motivational Intensity Model adapted from [25]. 
With this scheme in mind, the biocybernetic loop was designed to 
promote effortful engagement with the Tetris game via states of 
engagement/zone and to avoid the two states of boredom and 
overload.  The adaptive logic of the loop would be to increase the 
speed of falling blocks when boredom was detected and to 
continue to increase speed until effort peaked at the zone.  If a 
zone state was detected, the system was to make no further 
adjustment.  If a combination of high demand and low effort was 
detected, the loop should reduce the speed of the falling block to 
take the player out of the overload state.  This four-category 
model corresponds to the model of user representation that would 
be adopted by our biocybernetic loop. 
 
3.2 Stage Two: Psycho-Physiological Inference 
The conceptual model of user behaviour or representation 
provides an implicit direction for operationalisation.  At this stage 
in the process, the designer must elect to choose a number of 
psychophysiological measures to represent the user state.  The 
designer should carefully peruse the research literature because it 
is common for psychological concepts to be associated with more 
than one physiological measure.  By definition, a good 
psychophysiological measure is sensitive and responds to changes 
in psychological states in an accurate and reliable fashion.  It is 
also important for the psychophysiological measure to respond 



specifically to a target psychological state and not be subject to 
influences from other psychological states. 
One important consideration when selecting a 
psychophysiological measure for the biocybernetic loop is the 
context used to assess the sensitivity of the measure.  A measure 
may have a proven record of sensitivity in the laboratory but there 
is often a question about whether the same sensitivity will be 
apparent in the field.  There is also the issue of the task context for 
sensitivity.  Many studies in the psychophysiological literature 
used standardized stimuli and task protocols that may be very 
different from the task context for the biocybernetic loop.  The 
designer must also consider several practical issues such as the 
degree of intrusiveness introduced by the sensor, i.e. a hand-worn 
sensor would be of little use for a task that required use of both 
hands. 
The designer should at the very least examine the existing 
research literature from a critical perspective and make an 
intelligent estimate of whether this research will generalise to the 
usage scenario of the system.  The best way to assess this issue is 
to run some systematic tests of the psychophysiological measures 
with the actual task scenario.  This kind of testing serves to ensure 
that sensitivity of the measures is appropriate for the loop, 
provided that tests are conducted with a reasonable number of 
participants. 
Example: The measurement of effort in the MIM is associated 
with beta-adrenergic activity in the cardiovascular system, using 
measures of systolic blood pressure reactivity and the pre-ejection 
period [26, 27].  These cardiovascular measures are sensitive to 
movement and were not practical for our purposes.  We had 
already performed an EEG study in our laboratory where 
increased cognitive demand resulted in enhanced activity in  theta 
band (4-7Hz) power over mid-frontal scalp [28-30].  In addition, 
the manipulation of cognitive demand leads to a suppression of 
absolute power in both lower (~7.5-10Hz) and upper (~10.5-
13Hz) alpha bands [28].  However, this EEG data was derived 
from a standard experimental psychology protocol (a working 
memory task). 
We performed a study where 20 participants played Tetris under 
three conditions: easy/boredom (drop speed of blocks was very 
low), hard/engagement/flow (drop speed of blocks was fast) and 
impossible/overload (drop speed of blocks was so fast that playing 
the game was impossible).  The analysis of frontal theta activity at 
6Hz revealed an significant effect for task demand [F(2,18) = 
21.89, p<.01].  The observed trend illustrated that frontal theta 
increased from easy to hard demand and declined when task 
demand was extremely difficult (see Figure 2).   The analysis of 
upper alpha activity at 11.5Hz revealed a linear trend with 
increased task demand [F(1,19)=13.69, p<.01], i.e. greater 
suppression of alpha activity as game demand increased.  This 
linear effect was localized to the parietal region, e.g. P4. 

 

Figure 2.  Frontal theta at low, high and excessive demand on 
Tetris (N=20). 
 
At the end of the experiment, we had two candidate measures; 
frontal theta to represent effort invested in the game and parietal 
alpha to capture the level of mental workload/demand experienced 
by the player.  Furthermore, both measures had been validated in 
the specific usage context of the biocybernetic loop. 

3.3 Stage 3: A Quantified Model of User State 
Once measures have been validated, the next stage of the process 
is to recreate the conceptual model of the user state illustrated in 
Figure 1 in a quantifiable form.  The challenge at this stage is to 
operationalise the conceptual model of the user in an accurate and 
detailed form.  Due to restrictions surrounding the act of 
measurement (e.g. availability of appropriate sensors, strength of 
the psycho-physiological inference), there may be a loss of 
fidelity during the transition from concept to measurement. 
This quantifiable model is the way in which the user state or 
behaviour is represented within the biocybernetic loop.  The 
minimum requirement of the quantified model is that the user is 
represented with sufficient fidelity to enable the process of 
adaptation within the loop.  In other words, the target states that 
drive the adaptive logic of the loop should be clearly defined. 
Example: The conceptual model of the user was provided by MIM 
at stage one.  We adapted this model by measuring 
effort/motivation using frontal theta at Fz (Figure 2) whereas the 
demand dimension was represented by alpha suppression at 
parietal sites.  We made this assumption based upon our 
experiment as frontal theta demonstrated the shark-fin curve 
associated with MIM (Figure 1) whilst parietal alpha had a linear 
relationship with game demand.  The combination of both 
measures, combined with MIM, created the two-dimensional 
model of user state illustrated in Figure 4 (note: suppressed alpha 
power = increased demand).  The desirable target states of ‘zone’ 
and ‘engagement’ are associated with high effort; undesirable 
states are defined by high demand in combination with low effort 
(overload) or low demand/low effort (boredom). 

 
Figure 4.  Two dimensional representation of the user state 
using EEG measures. 
 

3.4 Stage 4: A Real-Time Model of User State 
The quantified model of the user state is a generic formulation 
that defines the ‘data space’ of the monitoring activity of the loop.  
In order for the model to trigger adaptation in real-time, this 
generic model must be populated with classes and criteria that 
define the four regions of the user representation (Figure 4). 



There are many techniques available for the classification of 
psychophysiological data within the biocybernetic loop, see [11] 
for review.  Many of these machine learning algorithms require 
training data, i.e. exemplars of psychophysiological data that 
describe target states.  The designer may rely on stage two in 
order to generate this kind of example data, but often triggers or 
criteria require a degree of calibration to the individual user.  The 
system may require each user to undergo a calibration process 
prior to usage.  Classification algorithms often require bespoke 
categories of data to enable training, but there are several 
approaches to the generation of these training sets.  If the 
biocybernetic loop is designed to detect naturalistic states, such as 
sleepiness, then it is relatively straightforward to generate 
example data. e.g. sleep deprivation.  Similarly, the generation of 
data to describe extreme states of high mental workload may be 
achieved by simply exposing individuals to high cognitive 
demand.  There are a number of emotion induction protocols 
available that may be used to generate example data for different 
emotional states.  These protocols can involve active manipulation 
(e.g. asking participants to recall emotional events from the past 
or placing people in a situation designed to induce a specific 
emotional state) or passive approaches (e.g. exposure to 
pictures/movies and/or music designed to induce a particular 
emotion).  Alternatively, psychophysiology may be continuously 
recorded and participants are required to provide a subjective self-
assessment in order to categorise emotional states.   
The major obstacle for the generation of example data for the 
biocybernetic loop is concerned with the context of data 
collection.  Therefore, the real-time model of user state should be 
calibrated using example data that is fully representative of the 
context of system usage. The problem with formal protocols is 
that data obtained may not generalize when the system is being 
used in a different context.  On the other hand, a reliance on 
subjective self-assessment is complicated by other reasons, e.g. 
limitations of introspective techniques, retrospective bias, 
individual differences.  However, given that the biocybernetic 
loop must respond in accordance with subjective perceptions, it is 
clear that calibration in line with self-reported experiences is an 
important approach. 
Once example data has been translated into a categorization 
algorithm, the designer must consider the real-time limitations of 
the model.  The response window of the adaptive system has been 
specified during stage one and the capability of the real-time 
model to classify data within that response window should be 
considered. 
Example:  We developed a number of calibration protocols to 
deliver trigger values that were tailored to each individual user.  
Our experimental work had created a version of Tetris where drop 
speed could be manipulated.  We initially created a version with 
ten different drop speeds from slow to impossibly fast.  Prior to 
system use, we exposed participants to each of ten levels and 
asked them to indicate a preference for each, i.e. which speed do 
you enjoy playing the most.  This was a standard procedure 
wherein each person played at each drop speed for two minutes 
and was asked to deliver a subjective preference.  It was relatively 
straightforward to characterise extreme states of boredom and 
overload using this manipulation.  However this method had two 
problems: the trigger level depended on the specific 
characteristics of the connection and two minutes of playing at a 
constant level was unrepresentative of the game. Baseline levels 
of frontal theta and parietal alpha were taken to derive a second 
method of trigger definition.  Baseline levels of EEG were 
collected whilst the participants viewed a relaxing piece of video 

footage.  This second method was based on criteria for triggering 
adaptation, which were generated relative to baseline levels of 
EEG activity.  For example, if frontal theta activity increased or 
decreased by a 100% (twice baseline) in any 5 sec window, whilst 
parietal alpha increased or decreased by 100% then the system 
adaptation may have been triggered.  In our case, if frontal theta 
increased by 100% whilst parietal alpha fell by 100%, this defined 
the player as being in the zone (see Figure 4). 
We also had to define our criteria within the context of a time 
window.  This represented another design decision.  If the time 
window for the trigger was too short, it was easily influenced by 
sudden fluctuations in EEG power that were unrepresentative.  
However, opting for a long time window (>5sec) ran the risk of 
reducing the sensitivity of the adaptive loop.  

3.5 Stage 5:  Design of the Adaptive Interface 
The biocybernetic loop ‘communicates’ the results of 
monitoring/classification to the user via the interface.  This may 
be an overt response that is obvious to the user or the system may 
adapt in a covert way that may or may not be noticed [2].  The 
critical concern for the designer at this stage is to ensure that 
adaptation is perceived as accurate, timely, intuitive and does not 
have any unintended consequences.  User perceptions of interface 
adaptations are hugely influenced by the visibility of the 
adaptation.  Overt adaptations tend to get noticed and accuracy is 
assessed in terms of self-appraisal (to what extent does the 
assessment of my internal state match my actual experience?), 
timeliness (is this adaptation what I need right now?) and intuition 
(does this adaptation make sense?).  Overt adaptations can have 
an immediate impact on the state of the user and offer an effective 
response. However, they do run a risk of drawing attention to 
system error, which may reduce the trust of the user in the system.  
Covert adaptations are much less risky in this respect, being 
inherently ambiguous and involving subtle changes at the 
interface.  The drawback of covert adaptation is that it tends to 
have a cumulative impact and is less effective than an overt 
strategy over a short period of time. 

The designer may opt to use both overt and covert strategies 
within the same system.  The logical strategy is to use covert 
adaptation to subtly reach target states and opt for overt forms to 
manage extreme states. 

Example:  The adaptive strategy of our Tetris game was relatively 
simple.  The speed of the falling blocks could be increased or 
slowed.  The relationship between the detection of user states and 
the type of adaptation was also straightforward; speed would be 
increased during boredom, decreased during overload and 
sustained during zone and engagement (Figure 4).   

Designing the adaptation was principally an issue of magnitude 
(how much should speed of falling blocks change at each 
increment) and feedback (should the user be provided with 
objective feedback of difficulty/drop speed).  After a series of 
pilot tests, we opted for very small adjustments in drop speed and 
no feedback to the player.  This strategy corresponds to the covert 
designs that were described earlier.  The experience of playing the 
game was that adjustments to drop speed were very subtle and the 
effect was cumulative and only apparent after playing for several 
minutes.  This strategy was adopted in order to focus players’ 
attentions on the game rather than the activity of the biocybernetic 
loop.  

3.6 Stage 6: Evaluation 
The benefits of biocybernetic adaptation for the user may be direct 
and tangible or nebulous.  Like all categories of emerging 



technology, it is important for the biocybernetic loop to 
demonstrate some kind of benefit for the user experience, e.g. 
better performance, greater engagement, reduced frustration.  
The final stage of the design process represents the challenge of 
evaluating and demonstrating the benefits of the biocybernetic 
loop. There are at least two levels of evaluation for a 
physiological computing system.  The first is designed to answer 
the issue of relative benefit; in other words, if a biocybernetic 
system is better, then we can only make this assessment in relative 
terms, i.e. better compared to what?  In the case of adaptive 
systems, the logical ‘control’ case is a manual version of the same 
system, but this kind of comparison tends to be asymmetrical 
because: (1) manual control systems offer gross control compared 
to automatic systems, and (2) there is a large novelty effect 
associated with nascent technology.  The issue of novelty may be 
resolved by longitudinal testing but the nature of the comparison 
is an intractable issue.  The second level of evaluation is to 
compare different versions of the biocybernetic control loop, i.e. 
different criteria or control dynamics, random adaptation [31].  
This second type of evaluation offers a controlled comparison in a 
way that the first type does not, but it is only useful for 
differentiating the impact of different kinds of biocybernetic loop 
on user perceptions and behaviour.   
Once the comparative frame has been established, the designer 
must decide how to measure outcomes from the evaluation.  With 
respect to comparing the performance of the adaptive system with 
a ‘control’ case, there are several options available, such as: 
performance quality (productivity, efficiency, error rate), 
psychophysiology (use of measures to index psychological 
concepts, provided they are subject to direct influence of the loop) 
and measures related to the properties of the interaction 
(questionnaires, interviews).  The primary choice of outcome 
measure will be determined by the conceptual basis of the loop as 
defined at stage one.  If the biocybernetic loop is designed to 
reduce mental workload or reduce errors, these implicit goals set 
the context for system evaluation.  For example, evaluation work 
conducted on the original biocybernetic loop [31-33] considered a 
range of outcome measures, including performance quality, 
subjective mental workload and EEG responses; see [34] for a 
summary. 
When the scope of evaluation includes different kinds of working 
biocybernetic loops, the designer may also wish to compare the 
adaptive response of the loop, e.g. frequency of adaptive 
responses, relative count of different types of adaptive response. 
Example: We decided to evaluate the basic prototype with respect 
to two main questions: (1) does biocybernetic adaptation promote 
improved player experience compared to manual adjustment of 
game demand, and (2) how does the reactivity of the 
biocybernetic loop (i.e. frequent vs. infrequent adjustments) 
impact on system performance and player experience.  The first 
hypothesis is designed to contrast a covert, automated process of 
adjustment with a condition where adjustments are overt and at 
the discretion of the player.  The second hypothesis is concerned 
with the design of trigger events (that activate adjustments) and 
how psychophysiological criteria impact on the system adaptation 
and the player experience. 
For the current study, we contrasted three types of working 
biocybernetic loop: (a) a conservative system that only made an 
adjustment when changes in EEG substantially deviated from 
baseline (greater than 200%), (b) a liberal system that adjusted 
game demand in response to a small deviation from baseline 
levels of EEG (100%), and (c) a “normal” system that responded 

to moderate changes in EEG (150%) relative to both (a) and (b).  
It was anticipated that the conservative system would be the least 
reactive version of the loop, i.e. pushing up demand very 
gradually and responded to overload very slowly.  The liberal 
system should make frequent adjustments and be faster to respond 
to the overload scenario.  The ‘normal’ version was included for 
purposes of comparison with the liberal and conservative systems.  
For the manual control system, we adopted a ‘Wizard of Oz’ 
approach where participants were required to speak aloud an 
instruction to increase (“higher”) or decrease (“lower”) the speed 
of the falling blocks.  These adjustments were made in real-time 
by an experimenter sitting behind a screen in the laboratory. 
10 participants (6 females) volunteered for the evaluation session.  
This was a repeated measures design where each participant 
encountered four versions of the system 
(conservative/liberal/normal/manual).  Each individual game of 
Tetris was played for 5 minutes.  The order of presentation of 
each system was counterbalanced and participants had a 5-minute 
rest break between each game.  Participants always started each 
game on the slowest speed setting.  If the blocks reached the top 
of the board and “game death” occurred, the game always 
restarted with an empty board on the slowest speed setting. 
In order to evaluate player experience, two sets of measures were 
collected.  A mood adjective checklist (UMACL) [35] was 
administered before and after each game session.  This 
questionnaire assessed three components of mood: energetical 
arousal (EA: tired-alert), tense arousal (TA: relaxed-tense) and 
hedonic tone (HT: happy-sad).  Participants also completed an 
immersion questionnaire [21] designed to capture the quality of 
gaming experience. 
The results of the experiment are divided into two areas, 
behaviour of the system and the influence of system behaviour on 
the user experience.  We captured three aspects of system 
behaviour: (1) mean frequency of adjustments to task difficulty 
(increases and decreases of task difficulty), (2) mean frequency of 
“game deaths” or “resets” (i.e. when blocks reached the top of the 
board and the game had to be reset), and (3) average difficulty of 
each game (i.e. game difficulty could vary between 1-10 in 
accordance with speed of falling blocks).  These data were 
calculated for all three versions of the biocybernetic system and 
the manual system.  Mean values are provided in Table 1 below. 
 

System Increase 
Demand 

Decrease 
Demand 

Mean 
Reset 

Mean 
Difficulty 

Conservative 63.6 43.2 1.3 3.8 

Normal 41.7 56.6 0.6 2.4 

Liberal 28.6 62.4 0.4 1.9 

Manual 9.4 1.7 0.5 3.3 

Table 1.  Mean values for measures of system adaptation 
across all four systems (N=10). 

The measures were subjected to a MANOVA analysis (System 
Type x System Measure) to assess statistical significance.  A 
significant interaction was found between both factors that was 
subjected to post-hoc t-tests. The number of adjustments to 
increase task demand was significantly higher for the conservative 
system compared to the liberal system (p<.01); unsurprisingly, all 
three biocybernetic systems exhibited a higher rate of upward 
adjustment compared to the manual system (p<.01).  The latter 



trend was also apparent in the analysis of downward adjustment 
(p<.05). The analysis of mean difficulty level revealed that 
difficulty was significantly lower for the liberal system compared 
to all other systems (p<.05). 
The impact of system adaptation on the user experience was 
assessed using two types of subjective questionnaire.  The mood 
questionnaire (UMACL) was administered before and after each 
game session; this allowed us to calculate a change score (post-
game minus pre-game) to assess mood changes in three 
component of mood: EA (alert-tired), TA (tense-relax) and HT 
(happy-sad).  All three components were subjected to a 2 x 3 
MANOVA.  Mean values are presented in Table 2. 
 

System EA TA HT IMM 

Conservative 4.3 3.1 0.0 64.7 

Normal 2.0 2.4 -1.9 65.5 

Liberal 0.2 1.1 -2.0 66.1 

Manual 1.1 0.7 -1.6 73.9 

 Table 2.  Mean values for subjective data: EA = energetic 
arousal, TA = tense arousal, HT = hedonic tone, IMM = 

immersion (N=10). 
Post-hoc t-tests revealed a significant effect for EA only (p<.05) – 
participants found the experience of playing the conservative 
version of the biocybernetic game to be more alerting compared to 
the liberal version.  The analysis of responses to the immersion 
questionnaire was insignificant, but a trend was observed that 
participants found the manual version of the game to be the most 
immersive.  
The goal of the evaluation was to assess how reactivity of the 
biocybernetic system influenced system performance and user 
experience.  The conservative EEG criteria tended to “push” the 
player, making the least number of downward adjustments of 
difficulty and prompting a relatively high frequency of “game 
death” (Table 1).  By contrast, the liberal system required only a 
small deviation from baseline levels of EEG activity in order to 
initiate an intervention and made a high number of downward 
adjustments of difficulty compared to the conservative system.  
As a result, the liberal system has the lowest level of mean task 
difficulty out of all four systems.  The “normal” system 
represented a middle path between both extremes of EEG criteria.  
As expected, the manual system had a much lower frequency of 
adjustments as participants tended to increase difficulty to a 
desirable level and make no subsequent adjustments.  In terms of 
average difficulty (Table 1), it was noted that the preferred level 
of demand was rather low (i.e. maximum difficulty = 10) and fell 
slightly short of the average demand imposed by the conservative 
system. 
Despite differences in system behaviour, we found little evidence 
for any substantial effects on the user experience.  The “push” 
provided by the conservative system resulted in enhanced 
alertness but there were no other significant effects on mood.  We 
were surprised that experience of the game led to an increase of 
negative affect as this was completely unanticipated.  We did 
speculate that the automated adjustment provided by the 
biocybernetic loop may have enhanced immersion in the game, 
compared to the manual version where the person had to ‘break’ 
from the experience to indicate an adjustment, but no evidence 
was found for this effect; in fact, immersion was maximized in the 

manual condition, presumably because this condition provided an 
optimal level of challenge. 
In hindsight, we felt that the range of EEG criteria adopted to 
create three versions of the biocybernetic loop was too narrow to 
create significantly different kinds of user experience.  Also, we 
adopted a 2sec time window for data processing and adaptive 
responses for all biocybernetic loops.  The combination of a 2sec 
response and small, incremental adjustments to drop speed meant 
that the system was often unable to prevent “game death” when 
the game board was filled above two thirds of its height (and drop 
speed was high).  We also felt that players needed longer exposure 
to the system, preferably in the form of repeated sessions, in order 
to differentiate the different types of adaptive control 

4. SUMMARY 
The paper has described the design process of the biocybernetic 
loop with a case study example.  Each stage in the design process 
contains specific categories of challenge that span psychology, 
signal processing and human-computer interaction.  The most 
significant challenge for the designer is addressing the 
multidisciplinary nature of the biocybernetic loop in sufficient 
detail. 
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