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Abstract 
 

Task engagement is a psychological dimension that 
describes effortful commitment to task goals.  This is a 
multidimensional concept that combines cognition, 
motivation and emotion.  This dimension may be 
important for the development of physiological 
computing systems that use real-time psychophysiology 
to monitor user state, particularly those systems seeking 
to optimise performance (e.g. adaptive automation, 
games, automatic tutoring).  Two laboratory-based 
experiments were conducted to investigate measures of 
task engagement, based on EEG, pupilometry and blood 
pressure.  The first study exposed participants to 
increased levels of memory load whereas the second 
used performance feedback to either engage (success 
feedback) or disengage (failure feedback) participants.  
EEG variables, such as frontal theta and asymmetry, 
were sensitive to disengagement due to cognitive load 
(experiment 1) whilst changes in systolic blood pressure 
were sensitive to feedback of task success.  Implications 
for the development of physiological computing systems 
are discussed. 
 

Introduction 

Physiological computing (PC) describes systems that 
capture psychophysiological changes in the user in order 
to  inform real-time software adaptation [1, 2].  PC 
systems rely on psychophysiology to create a 
representation of the psychological state of the user in 
real-time, e.g. changes in cognitive activity, positive and 
negative emotions, high vs. low task motivation.  The 
system consults this representation to select an 
appropriate category of adaptive response.  For example, 
if the user is frustrated, changes in user state should 
prompt the presentation of help information; if a player 
is bored by a computer game, the representation of user 
state should trigger an increase of game difficulty [3, 4].  
The purpose of this approach is to create real-time 
software adaptation that is both implicit and intuitive.    

The PC paradigm encompasses several existing 
strands of research/applications, from the control of 
adaptive automation [5, 6]  to the use of 
psychophysiology to represent user emotion [7].  Unlike 
BCI applications [8], the PC approach is essentially 
passive (i.e.  requiring no additional activity on the part 
of the user) and works mainly at the meta-level of the 
human-computer interaction (HCI)  (i.e. ensuring that 
negative psychological states are minimised), i.e. 

whereas BCI represent an alternative form of input 
control [9]. 

The cycle of data collection and system response 
wherein psychophysiological change is transformed into 
adaptive control may be described as a biocybernetic 
loop [10].  This category of biocybernetic system 
control creates a symmetrical form of HCI where the 
availability of system information to the user is balanced 
by data about user state being at the disposal of the 
system [11].  Making a computer system privy to 
psychophysiological states has the potential to enable 
so-called ‘smart’ technology, i.e. systems that are 
characterised by increased autonomy and adaptive 
capability [12].  If technology develops in this direction, 
there is a subtle shift in the dynamics of HCI, from the 
master-slave dyad that characterises the way we 
currently use computers towards a collaborative, 
symbiotic relationship that requires computer 
technology to extend awareness of the user in real-time 
[13, 14].  

One fundamental question surrounding the 
development of PC systems concerns how best to 
operationalise and represent the user state.  There are 
several aspects to the question that should be considered 
during the initial stage of system design.  In the first 
instance, what kind or dimension of user state is the 
most important one for a particular application domain?  
For example, physiological computing systems designed 
to control automation in the aircraft or vehicle cockpit 
have traditionally been concerned with representing the 
cognitive capability of the operator, specifically the 
prevention of Hazardous States of Awareness (HSA) 
[15].  Systems that employ psychophysiological 
measures for affective computing application emphasise 
the monitoring of negative affective states, such as 
anxiety [16]  and frustration [17].  Similarly, 
psychophysiological monitoring has been used to 
identify quasi-emotional states, such as enjoyment, for 
those investigating this approach in the context of 
computer games [18].    At the second stage of system 
design, the researcher must identify those 
psychophysiological measures that provide the best 
operationalisation of the required psychological 
dimension.  This stage may involve perusal of 
background literature followed by a series of validation 
experiments in the laboratory or the field, see [2]  for 
full description of these issues. 

This paper is concerned with how to measure the 
psychological dimension of task engagement as the 
basis for the development of PC systems.  Task 
engagement is defined as “effortful striving towards task 

 
Measuring Task Engagement as an Input to Physiological Computing 

 

Stephen H Fairclough 
Liverpool John Moores 

University 
Henry Cotton Campus, Liverpool 

s.fairclough@ljmu.ac.uk 
 

Katie C Ewing 
Liverpool John Moores 

University 
Henry Cotton Campus, Liverpool 

k.c.ewing@ljmu.ac.uk 
 

Jenna Roberts 
Liverpool John Moores 

University 
Henry Cotton Campus, Liverpool 

j.roberts@ljmu.ac.uk 
 

 



 

 

goals” [19].  This multidimensional concept 
incorporates at least three psychological dimensions: (1) 
the investment of mental effort to optimise cognitive 
performance, (2) motivation to successfully achieve task 
goals, and (3) affective changes associated with the 
likelihood of goal attainment.  This dimension is 
important because engagement has a predictive 
relationship with human performance (i.e. greater 
engagement = superior performance) and wellbeing (i.e. 
disengagement from a task is associated with negative 
psychological states such as boredom or anxiety).  

Previous research 

Research into biocybernetic control of adaptive 
automation at NASA focused on the measurement of 
spontaneous electroencelographic (EEG) activity in 
order to capture task engagement, i.e. an EEG index 
ratio measure where the ratio of mean power in the 
high-frequency beta bandwidth (13-40Hz) is divided by 
total power in lower-frequency alpha (8-12Hz) and theta 
(3-7Hz) components (/(+)) [10].  This prototypical 
system enabled automation of a laboratory-based task 
(the Multi-Attribute Task Battery - MATB) provided 
that the operator was deemed to exhibit high task 
engagement; if EEG measures of task engagement went 
into a decline whilst automation was activated, the 
system switched the user into a manual control mode, 
i.e. to re-engage with the task and prevent automation-
induced complacency.  This programme of research is 
summarised in [20]. 

The measurement of task engagement using 
psychophysiology takes on a different complexion in the 
context of desktop-based systems.  For example, 
detection of negative user states is particularly relevant 
for computing applications designed to aid learning 
[21].  Recent work on the detection of user frustration 
[17]  demonstrated the utility of the multimodal 
approach that combined multiple measures to predict 
subjective feelings of frustration.  These authors 
measured skin conductance in combination with posture 
analysis, detection of head gestures (head shakes and 
nods), facial expression (smiling) and haptic monitoring.  
These measures were used to predict self-reported 
episodes of frustration, which was accurately detected in 
79% of all cases (chance level = 58%).  This experiment 
demonstrated how covert psychophysiology may be 
combined with overt behavioural signals in order to 
define the psychological dimension of interest.  Related 
work on affective computing has also combined 
different psychological dimensions to yield a suitable 
representation of user state.   For example, Burleson and 
Picard [22]  described a state of “stuck” that may occur 
during the learning process to the detriment of user 
motivation.  The definition of this state combines 
negative affect (e.g. anxiety) with cognitive 
characteristics (e.g. inability to focus, mental fatigue).  

Measuring task engagement via 
psychophysiology 

Task engagement can be defined with respect to 
cognitive activity (mental effort), motivational 
orientation (approach vs. avoidance) and affective 
changes (positive vs. negative valence).   

Mental effort is conceptualised as energy 
mobilisation in the service of cognitive tasks or goals.  
At the cerebral level, the electrical activity of the brain 
may be quantified via the EEG to study how different 
states of brain activation represent the level of mental 
effort investment.  The topography of EEG activation 
may provide important information about the specificity 
and distribution of activation over the cortex.  A series 
of experiments demonstrated that augmentation of theta 
activity (4-7Hz) from central frontal sites and 
suppression of alpha activity from occipital areas were 
both associated with increased mental effort in response 
to working memory load (i.e. number of items to be 
retained in memory) [23, 24].   

The pupillary response has a long association with 
the measurement of mental effort in response to 
cognitive variables [25, 26].  There is evidence that 
pupil dilation is greater during the processing of a 
complex cognitive operation relative to a simple one.  
The main problem with pupilometry is interference from 
light adaptation, i.e. for those environments where the 
level of lighting is not carefully controlled.  The Index 
of Cognitive Activity [27]represents an attempt to 
quantify small discontinuities in pupil size that are 
related to cognitive activity.  The ICA is derived in a 
selective manner that minimises the influence of lighting 
levels.   

There is an obvious link between task engagement 
and the motivation to successfully achieve a  given 
outcome.  Motivational intensity theory [28, 29]  
proposes that goal commitment (i.e. the willingness to 
invest effort into the task) is a function of perceived: (i)  
task difficulty, (ii) ability, and (iii) likelihood that 
successful performance on the task will achieve a 
desired motive (e.g. monetary incentives, prowess, 
‘feeling good’).  Therefore, if the individual assesses 
themselves to have the requisite level of skill to achieve 
success, then effort is invested into performance.  
Research into motivational intensity theory has used 
indicators of sympathetic nervous system (usually 
systolic blood pressure) to describe the “tipping point” 
where increased difficulty/reduced perception of 
ability/reduced perception that the task is worthwhile 
forces participants to switch from  effortful striving for 
goal success to disengagement and a significant 
reduction of mental effort [30, 31].  

Related research has linked changes in frontal EEG 
asymmetry to the self-regulation of affect and 
motivational orientation.  In broad terms, the experience 
of positive emotions is associated with high levels of 
relative left frontal activity, whereas negative emotions 
is related to increased relative right frontal activity [32, 
33].  There is also evidence that increased left frontal 



 

 

activation is correlated with motivational approach 
whilst right frontal activation is linked with a motivation 
disposition in the direction of avoidance.  Research into 
the influence of reward on frontal asymmetry supports 
this connection [34-36], and higher levels of left frontal 
activation have been associated with trait measures of 
behavioural activation [37-39].  The relationship 
between motivational direction and affective valence 
encapsulated by frontal EEG asymmetry is implicit 
within a performance setting. 

Task engagement is a multidimensional description 
of user state [40]  that incorporates  psychophysiological 
measures of cognition, motivation and affect.  The 
relationship between physiology and psychology may be 
described as many-to-one [41]  as multiple indicators 
from EEG, pupilometry and cardiovascular activity are 
deployed in concert to represent this dimension of task 
engagement.  The purpose of this paper is to describe 
two laboratory experiments, both dedicated to the 
measurement of task engagement using different types 
of manipulation.  In experiment one, participants are 
exposed to five levels of task demand using a working 
memory task.  The aim of this experiment is to mentally 
overload the participants so he or she decides to 
withdraw effort from the task because it is deemed to be 
too difficult to achieve.  The second experiment 
manipulated task engagement by providing participants 
with false feedback about the quality of their 
performance.  One group was informed that 
performance was successively improving over time 
whereas the second group of participants received 
feedback of progressive performance decline.  In the 
case of the second experiment, task engagement is 
influenced by manipulating participants’ perception of 
their own ability.  

Experiment 1:  Mental Overload 

Description of Study 

21 participants (11 male) took part in the research, 
however data from 3 participants was excluded due to 
EEG artefacts and incorrect task completion. 
Participants were aged between 19 and 39 years of age.  
Cognitive effort was elicited with a verbal working 
memory task known as the n-back task. The task 
requires participants to indicate if the currently 
presented stimulus matches one shown on an earlier 
occasion.  Solid black letters (against a white 
background) were presented to participants on colour 
monitor at a distance of 80cm. The task consisted of 6 
levels of difficulty, with level 1 being the easiest and 
level 6 the most difficult. For each stimulus presentation 
participants needed to indicate if the letter matched the 
previous letter (level 1), the letter 2-previous (level 2), 
the letter 3-previous (level 3), the letter 4-previous (level 
4), the letter 5-previous (level 5) and the letter 6-
previous (level 6). Responses were given with a 
keyboard press of 1 for match and 2 for non-match, 

using the right index and middle fingers. Participants 
attended a training session of approximately 4.5 hours 
on the day before the experiment.  

EEG activity was recorded monopolarly from 32 Ag-
AgCl pin-type active electrodes mounted in a BioSemi 
stretch-lycra headcap. Electrodes were positioned 
according to the international 10-20 system and EEG 
activity recorded from the following sites: frontal pole 
(FP1, FP2), Anterior-frontal (AF3, AF4), frontal (F3, 
Fz, F4), fronto-central (FC5, FC1, FC2, FC6), central 
(C3, Cz, C4), temporal (T7, T8), parieto-central (CP5, 
CP1, CP2, CP6), parietal (P7, P3, Pz, P4, P8), occipito-
parietal (PO3, PO4) and occipital (O1, Oz, O2). 
Electrodes were also placed at earlobe sites (A1, A2) 
allowing electrodes to be referenced off line to a linked 
ears reference. EEG was recorded continuously 
throughout a 4 minute baseline prior to the task and 
continuously throughout the task.    

Systolic blood pressure measurements were taken 
using a Dinamap Vital Signs monitor (PRO100) using a 
cuff that was worn on the upper arm. Readings of 
systolic, and diastolic blood pressure along with heart 
rate and mean arterial pressure were obtained. A 
baseline reading was taken during a 4 minute period 
prior to task completion at 180s after the start of this 
period. Readings were then taken for each experimental 
trial 60s after onset giving 2 readings for each task level.  

Pupil diameter measurements were recorded 
continuously at a sample rate of 60Hz with two remote 
infrared video cameras (Seeing Machines Ltd, Canberra, 
Australia). The cameras used binocular tracking and 
were mounted on a metal frame 80-90cm in front of the 
participant, placed beneath the stimulus display monitor. 
Pupil size resolution was possible at 0.00001mm. Data 
was recorded using FaceLAB 4.6 software.  Illumination 
from the stimulus display and room lighting (8 x 36W 
ceiling mounted fluorescent tubes) was maintained 
within the range of 355-380Lux at the seated position of 
the participant to avoid a confound with the pupillary 
light reflex.  Pupil diameter was measured throughout a 
2min baseline prior to task completion during which 
participants were required to maintain their gaze at a 
fixation point (green dot) at the screen centre. 
Measurements were then made continuously throughout 
each trial. Participants were asked to keep still and 
maintain fixation at the centre of the screen minimizing 
possibility of head movement artifacts in the signal. 

All EEG analysis was performed using BESA 
software (MEGIS software GmbH, Gräfelfing, 
Germany). First a 50Hz notch filter was applied to the 
raw data along with a 0.05Hz high pass and 60Hz low 
pass filter. A linked ears montage was applied. Data was 
visually inspected for artefacts from external 
electromagnetic sources which were excluded. Data 
underwent automatic correction for blink artefacts, 
horizontal and vertical saccades based on detection 
through predefined topographies. Average power 
spectra were then computed for each experimental 
condition.  Power spectra in µV2 were Log transformed 



 

 

(natural log) to normalise the distribution.  Frontal 
asymmetry values were obtained for all 7 experimental 
conditions using EEG power values from the following 
electrode sites: FP2, AF4, F8, F4, FC2, FC6, C4, 
T8,(right hemisphere sites) FP1, AF3, F7, F3, FC1, 
FC5, C3, T7. (left hemisphere sites).  

Power estimates for frequencies lying within 
Individual Alpha Bands were then used in the following 
formula: Ln [right total alpha power] – Ln [left total 
alpha power] to generate an asymmetry index [42]. 
Positive values indicated greater relative right alpha 
power and greater relative left frontal activity, greater 
relative right frontal activity was indicated by negative 
values.  Asymmetries were also calculated for 
homologous pairs of electrodes. 

Data from the left and right eye of 14 participants (7 
female) was pre-processed to remove erroneous 
measures of pupil diameter arising from blinks, partial 
blinks, electromagnetic noise and artefacts resulting 
from tracking failure and camera joggle. Readings of 0 
or near 0 were eliminated from the data to exclude 
blinks, partial blinks and tracking failure, and readings 
differing by more than +/- 0.1mm from the previous 
observation were excluded to reduce the influence of 
noise.  The data then underwent 1-D wavelet 
decomposition using the orthogonal wavelet ‘db4’ from 
the Daubechies family of wavelets. The decomposition 
was achieved by convolving the signal with a high and 
low pass filter followed by downsampling by a factor of 
2. Decomposition was performed using 5 iterations on 
each signal. The procedure produced a set of detail 
coefficients which were subjected to a minimax (hard) 
threshold to reduce noise, in which noise was presumed 
to be Gaussian white noise. Detail coefficients were then 
subjected to a threshold of 0.05 and coefficients above 
this value interpreted as showing high frequency 
discontinuous increases in pupil diameter. Numbers of 
these discontinuities, which have been found to correlate 
with cognitive processing [27], were used to generate an 
index consisting of the average no of discontinuities per 
second for each condition. 

Results 

EEG data were analysed with respect to two primary 
variables: frontal theta activity from the central area (Fz) 
and frontal asymmetry data.  Theta activity at Fz was 
calculated using the dominant frequency (i.e. as 
personalised to each individual).  The average power at 
the dominant theta frequency was calculated and 
submitted to analysis via ANOVA.  The results revealed 
a significant trend [F(6,12)=3.09, p<0.05].  Post-hoc 
testing revealed that theta activity was significantly 
lower at baseline, the one-back and the six-back task 
compared to all other conditions (p<0.05).   

Activity in the alpha bandwidth was also calculated 
with respect to the dominant frequency.  Alpha power at 
the dominant frequency was calculated for all 
participants and converted via natural log prior to 
analysis.  Asymmetry scores (left side minus right side) 

were calculated across three pairs of frontal sites on 
either side of the midline: AF3-AF4, F3-F4, FC3-FC4.  
Therefore, an increase of the asymmetry score is 
equated with greater activation of the left hemisphere.  
Each asymmetry score was analysed using an ANOVA 
model.  There were no significant results for those 
asymmetry scores calculated with AF3-AF4 or F3-F4; 
however, the frontal-central sites (FC3-FC4) revealed a 
significant trend [F(6,12)=2.57, p<0.05].  Post-hoc 
testing revealed greater left-hemisphere activation (i.e. 
approach motivation) during all task conditions 
compared to baseline or the six-back condition (p<0.05).  
In other words, both the baseline (resting) condition and 
the six-back task were associated with greater levels of 
right hemispheric activation, which is associated with 
avoidance motivation.  This finding is illustrated in 
Figure 1. 

 
Figure 1.  Frontal asymmetry scores (left side alpha power 
minus right side alpha power at dominant frequency) for FC3-
FC4 across all six task demand conditions (N=18). 

 
The measurement of systolic blood pressure has been 

associated with mental effort and task motivation.  The 
analysis of this variable revealed a significant trend 
[F(6,12)=13.01, p<0.01]; however, post-hoc testing 
revealed only a significant difference between resting 
baseline and task conditions, i.e. the measure failed to 
distinguish between different levels of task demand.   

An approximation of the Index of Cognitive Activity 
(ICA) was calculated for 14 participants based on 
changes in the pupil size.  Specifically, the ICA captures 
short discontinuities in pupil size related to changes in 
mental workload.  These data were subjected to 
ANOVA analysis, which revealed a significant 
difference due to experimental condition [F(6,8)=7.26, 
p<0.05].  Post-hoc testing revealed that the ICA was 
significantly lower than all working memory conditions, 
i.e. the ICA was not significantly sensitive to changes in 
working memory load (see Figure 2). 

 



 

 

Figure 2.  Mean score on modified Index of Cognitive  Activity 
measure(N=14). 

 

 

 

Experiment 2:  Performance Feedback 

Description of Study 

34 participants (17 males and 17 females) formed 2 
independent groups. A positive feedback group 
completed a working memory task and received pre 
arranged performance scores indicating a gradual 
improvement in performance over time. A negative 
feedback group completed the same task but received 
scores indicating a gradual decline in performance.   

The memory task was computer based and was 
created using E-Studio software. It was developed from 
the ‘n-back task’ [24]  . The version of the task used in 
this study was a 2 back task where participants 
continuously compared a currently presented stimulus to 
one seen 2 trials previously. Participants were presented 
with a 3x3 grid. On each trial, a green square appeared 
at one of the 9 grid locations for 1.75 seconds and was 
immediately followed by the next square. Participants 
were asked to respond on every trial by pressing 1 of 2 
keyboard buttons to indicate that the location of the 
current square was either in the same location as the 
square seen 2 trials before (a match) or in a different 
location (a mis-match). The task was divided into 5 
blocks, each of which contained 90 trials. Each block 
lasted just over 2.5 minutes and matches occurred on 
approximately 35% of trials.  

In the experimental session of the study, participants 
were provided with false performance feedback as a 
percentage of overall accuracy at the end of each task 
block. Performance feedback was presented via a 
second computer placed adjacent to the memory task 
computer. Participants were misled to believe that 
performance data was being calculated in real-time by 
this second computer following each block of task 
activity. This illusion was achieved via a macro written 

in Microsoft Excel. The macro simulated a process of 
calculation and analysis and produced a chart to display 
performance accuracy.  Each chart also included 
performance levels from any previous block/s which 
provided a visual representation of a gradual decline in 
performance for the negative feedback group and a 
gradual improvement in performance for the positive 
feedback group.  Both groups received performance 
feedback of 60% after block 1 and both groups showed 
a cumulative decline or increase of 11% in total from 
block 1 to 5. For the negative feedback group, 
performance accuracy scores fell from 60% after block 
1 to 56% after block 2, to 53% after block 3, to 52% 
after block 4 and finally reached 49% after block 5.  

Blood pressure was recorded using a standard 
Dinamap with the pressure cuff placed over the brachial 
region of the participant’s left arm. Initial screen and 
baseline readings were taken at the start of the 
experiment. Whilst participants worked on the memory 
task, 2 blood pressure readings were taken after 
approximately 20 seconds and 120 seconds from which 
an average was calculated.  

EEG was recorded using active electrodes and 
sampled at 512Hz via a BioSemi system. Offline, EEG 
signals were corrected for ocular and physical artifacts 
and filtered using high and low band pass filters of 
0.16Hz and 15Hz respectively.  Artifact free epochs 
were then analysed via Fast Fourier Transform which 
yielded mean power in the alpha (8-12Hz) bandwidth.  
Alpha activity in the right hemisphere relative to 
homologous left hemisphere sites was calculated (ln 
[right] – ln [left]) to produce scores of alpha asymmetry 
for the following pairs of frontal sites: Fp2-1, Af4-3, F4-
F3, FC2-FC1 and FC6-FC5. Theta activity was 
collected from frontal, central areas (Fz) as in the 
previous experiment.   

Facial electromyographic activity (fEMG) was 
recorded to attain measures of muscle activity for the 
corrugator supercilii.  
Results 

EEG data:  Two participants were excluded from this 
analysis due to technical problems with the data 
collection (one from each Feedback Group).  The 
MANOVA analysis of EEG data revealed significant 
main effects for frontal asymmetry site, F(4,26) = 5.70, 
p < .01, and experimental condition, F(1,29) = 4.05, p < 
.05.  The effect of experimental condition for EEG 
frontal asymmetry demonstrated that frontal asymmetry 
score (across all sites) was significant higher in the 
presence of performance feedback, i.e. higher level of 
activation in left hemispheric sites during feedback 
condition.  There was no effect of feedback on levels of 
frontal theta activity. 

Systolic Blood Pressure (SBP):  The ANOVA model 
conducted on SBP data revealed a significant main 
effect for experimental condition, F(1,30) = 4.82, p < 
.05, i.e. SBP was significantly higher during Feedback 
[M = 115.78] compared to the No Feedback condition 



 

 

[M = 112.71].  The same model also revealed significant 
interactions between Feedback Group x Task Block, 
F(4,27) = 3.55, p < .05, and Feedback Group x 
Experimental Condition x Task Block, F(4,27) = 3.20, p 
< .05.  For the positive feedback group, mean SBP was 
significantly higher at Task Block 5, t(15) = 3.26, during 
the Feedback condition compared to the No Feedback 
Condition (Figure 3).  
 

Figure 3.  Mean Systolic Blood Pressure (mm/Hg) for Positive 
Feedback Group compared across both experimental 
conditions (N=16). 

Corrugator Activity:  The corrugator data were 
subjected to ANOVA model with an eyes open baseline 
included as an additional cell in the Task Block factor.  
This analysis revealed no significant effects.  The trend 
of the data was to increase in presence of Feedback and 
this trend was particularly prominent during Task Block 
5. 

Discussion & Conclusions 

Explanation of findings 

Two experiments were conducted to identify the 
sensitivity of psychophysiological variables to the 
manipulation of task engagement.  In the first 
experiment, engagement was manipulated by 
systematically increasing task difficulty.  It was 
anticipated that the high level of working memory load 
at the 5- and 6-back versions of the task would cause 
participants to disengage.  However, there was evidence 
from subjective measures of workload (NASA-TLX) 
that a point of overload was not reached, i.e. mean TLX 
score at 6-back task = approx. 6.5 on a 10-point scale.  
A reduction of frontal theta and an increase of right 
hemispheric frontal activity (Figure 1) was observed at 
maximum task demand.  These data indicated that our 
participants were reducing levels of mental effort and 
shifting motivational orientation towards avoidance.  In 
other words, they were withdrawing from the task.  The 
pupilometry data from the ICA did not yield a 
statistically significant trend, however, a trend was 
observed of increasing cognitive demand (Figure 2).   

These findings beg a question about volitional vs. 
mandatory responses to task demand in the 
psychophysiological realm.  The positive linear 
relationship between task demand and ICA illustrated in 
Figure 2 contradicts the  quadratic pattern that 
characterised both frontal theta and EEG frontal 
asymmetry (Figure 1).  We may speculate that the ICA 
represents a response to perceived task demand, 
regardless of engagement, whereas the quadratic trend 
describes a self-regulated process of energy 
mobilisation.  With respect to the latter, the initial level 
of low task demand (e.g. 1-back task) failed to increase 
frontal theta, which increased rapidly for 2-, 3- and 4-
back versions of the task, before falling during the 
highest levels of task demand.  The trend for frontal 
asymmetry was slightly different (Figure 1); exposure to 
the task led to increased approach motivation (at the 1-
back task), which declined as task difficulty increased 
(indicating avoidance motivation) with the exception of 
a marked increase at the 5-back version of the task. 

The second experiment attempted to manipulate task 
engagement in two ways.  First, it was anticipated that 
performance feedback inevitably increases task 
engagement as the quality of one’s own performance is 
rendered more salient.   By providing repeated exposure 
to both positive and negative feedback, we anticipated 
different patterns of mental effort investment; 
specifically, we expected positive feedback to reduce 
effort investment (as participants received the 
impression that performance was consistently 
improving).   

It was hypothesised that the presentation of negative 
feedback would initially mobilise high levels of effort, 
leading to disengagement towards the latter periods of 
the task as prompted by repeated exposure to negative 
feedback.  The first hypothesis was supported by the 
frontal asymmetry data; participants exhibited higher 
left frontal activation during the feedback condition 
(regardless of whether feedback was positive or 
negative).  The only psychophysiological response to 
the direction of feedback was found with respect to 
systolic blood pressure.  This variable is associated with 
sympathetic activation of the autonomic nervous system, 
i.e. increased activation.  Whilst systolic blood pressure 
did not respond to different levels of task demand during 
the first experiment, this variable exhibited a broadly 
linear increase in response to feedback of positive 
performance (Figure 3).  This pattern was unexpected 
but was interpreted in the following way; contrary to 
expectations, positive feedback increased participants’ 
appraisal of their own capability, which motivated these 
individual to both aspire towards higher levels of 
performance and increase mental effort mobilisation.  
The absence of the opposite trend in the presence of 
negative feedback was puzzling; perhaps negative 
feedback had no impact on any psychophysiological 
indicators of effort because the task was quite abstract 
and there were no negative consequences of task failure 



 

 

Implications for Physiological Computing 

What conclusions can be drawn from these 
laboratory studies for the development of physiological 
computing (PC) systems?  In the first instance, the 
pattern of EEG data from experiment one point to the 
feasibility of capturing task engagement as a volitional 
response to task demand.  This may be particularly 
important for applications such as computer games, 
which emphasise both autonomy and different levels of 
task demand.  It is proposed that theta activity at frontal-
central sites and frontal asymmetry are investigated as 
real-time variables to be integrated into the 
biocybernetic loop.  Both variables demonstrated a 
sufficient degree of sensitivity to justify follow-up work.  
Further research must also explore individualised 
algorithms using neural net approaches [43, 44].  

It should be noted that both EEG variables failed to 
show any sensitivity to positive vs. negative 
performance feedback during the second experiment.  
Therefore, these EEG variables seemed to respond 
primarily to engagement in the context of cognitive 
load.  On the other hand, systolic blood pressure, which 
demonstrated a sensitivity to performance feedback, 
failed to distinguish between different levels of 
cognitive load in the first experiment.  This pattern of 
results demonstrates the multidimensional nature of task 
engagement - different categories of measures may 
exhibit sensitivity to specific aspects of the concept.  In 
this case, EEG variables respond to disengagement due 
to cognitive load whilst changes in systolic blood 
pressure reacted to changes in goal-setting behaviour, 
i.e. a desire to achieve at a higher level. 

The relationship between physiology and psychology 
may be described as ‘many-to-one’ in the case of task 
engagement [41]; data from several  physiological 
sources are required to successfully capture this 
dimension.  The data from both experiments 
demonstrate the sensitivity of certain variables to 
different levels of task load or performance feedback.  
But the crucial distinction for the development of PC 
systems is the discrimination between rising 
engagement, sustained engagement and sustained 
disengagement.  Systems that are designed to adaptively 
respond to changes in engagement need to assess: (1) 
how to facilitate rising levels of task engagement, and 
(2) how to counteract periods where the user may 
become disengaged from the task.  With respect to our 
data, systolic blood pressure would appear to be a 
candidate for (1) whereas the EEG variables were 
sensitive to (2). 

From the perspective of system design, it is not 
simply a question of selecting the correct variable to 
represent engagement, there is also the issue of 
sensitivity to the specific aspect of task engagement that 
is central to the application.  For designers of adaptive 
automation applications, it is important to protect safety-
critical performance; therefore, the ability to detect  and 
predict task disengagement is a top priority.  If the PC 
approach is applied to an automatic tutoring system, 

detection of sustained or rising engagement becomes 
just as important because learning software should be 
designed to engross and inspire users, and to sustain 
these positive states via real-time adaptation.   

It is important for designers to have a clear idea about 
the level of discrimination that the system must achieve 
in order to provide appropriate levels of adaptation.  For 
some systems, detecting two categories of engagement 
will suffice (high vs. low engagement); other systems 
may require more fine-tuned levels of discrimination 
(high vs. high/med vs. med vs. med/low vs. low).  As 
the number of possible categories increases, the 
quantitative distance between each category declines, 
which will lead to higher false positives or misses, so 
the designer must consider this trade-off to optimise the 
performance of the system as a whole.  Much depends 
on the adaptive capability of the system under 
development, PC systems that are capable of only one 
kind of adaptation (e.g. present help vs. no help 
presentation) only require a two-category classification.  
Systems with several levels of adaptive capability (e.g. 
present four different categories of help information) 
will require a psychophysiological algorithm that can 
discriminate four levels of task engagement [2]. 

From the perspective of building PC systems, it is 
obvious that psychophysiological variables offer 
significant advantages for representing user states.  
These measures are covert, passive and highly sensitive, 
but this level of sensitivity is double-edged.  
Psychophysiological variables are sensitive to a wide 
range of possible influences from physical artifacts 
(moving the body) to environmental factors (room 
temperature) to diurnal influences (time of day), the 
effects of caffeine and food, exercise, personality, mood 
etc.  If system designers wish to harness the sensitivity 
of psychophysiology, this double-edged property must 
be appreciated.  One could resolve the problem by 
monitoring confounding variables in order to model and 
isolate their influence on the psycho-physiological 
inference that is central to PC systems.  Alternatively, 
designers could seek context via another route by 
considering psychophysiological changes in the same 
data space as other categories of variable, i.e. a 
multimodal approach [45].  This approach would 
combine psychophysiological changes with behavioural 
markers, such as posture [46]  and facial expression.  
Psychophysiological changes could also be assessed in 
relation to measures of task performance [47].  One 
could combine markers from several categories 
(psychophysiological, behavioural, performance) in 
order to discern the level of task engagement via a 
process of triangulation.  The danger with this approach 
is how to handle divergence/disagreement between the 
different categories of data. 

To conclude, task engagement is an important 
psychological dimension for the development of 
physiological computing systems.  It is also a complex 
dimension incorporating aspects of cognition with self-
regulatory activities such as goal-setting and motivation.  



 

 

Laboratory experiments have been described to identify 
candidate variables such as EEG frontal asymmetry and 
systolic blood pressure.  The next step is to evaluate 
these variables in the context of a computerised task in 
the field. 
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