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Abstract 

The contemporary heritage institution visitor model is 

built around passive receivership where content is 

consumed but not influenced by the visitor. This paper 

presents work in progress towards an adaptive 

interface designed to respond to the level of interest of 

the visitor, in order to deliver a personalised experience 

within cultural heritage institutions. A subject-

dependent experimental approach was taken to record 

and classify physiological signals using mobile 

physiological sensors and a machine learning algorithm. 

The results show a high classification rate using this 

approach, informing future work for the development of 

a real-time physiological computing component for use 

within an adaptive cultural heritage experience. 
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Introduction  

The research presented here, motivated in part and 

funded by the ARtSENSE project [1], represents a work 

in progress towards an adaptive interface designed to 

respond to the level of interest of the viewer [2] in 

order to deliver a personalised experience within 

cultural heritage institutions using technology such as 

augmented reality systems. The approach we take is 

the first step in creating a real-time physiological 

computing component for use within an adaptive 

cultural heritage experience. The study we present 

utilised genuine material derived from a cultural 

heritage institution to elicit psychophysiological 

responses in an ambulatory setting. 

Motivation 

In recent years cultural heritage institutions have 

started to adopt mobile technologies such as smart 

phones and tablet computers to increase information 

provision and retain audiences for exhibits or 

installations [3]. Cultural heritage installations can be 

considered to be a distinct form of HCI that is closely 

related to tourism, navigation and education 

applications.  

The contemporary heritage institution visitor model is 

built around passive receivership where content is 

consumed but not influenced by the visitor [4]. This 

passivity is reflected in how mobile technologies are 

currently used in heritage installations, by offering 

static content delivery using methods such as quick 

response codes (QR) and media enhanced guided tours. 

QR codes involve encoding information about an exhibit 

into a matrix barcode that is scanned by the device, 

and then displays the information to the user. Media 

enhanced guided tours provide navigation paths 

through heritage installations, serving audio or 

multimedia content about exhibits via displays or 

augmented reality overlays [5]. These technologies can 

act as standalone experiences or as tools to augment 

the traditional museum-provided human expert tour. 

However, these technologies are opaque to the visitor 

and ignore, potentially, the most important source of 

data about the cultural heritage experience:  the 

visitors themselves. 

Personalising Cultural Heritage 

To personalise the cultural heritage experience we 

propose to use mobile physiological sensors and an 

interest recognition framework to collect, record and 

classify indices of psychophysiological variance. The 

level of interest for the visitor that emerges from this 

classification can subsequently be used to inform 

choices of interactivity for users at system level. This 

choice can take the form of a heritage content 

“recommender”, which offers content navigation 

decisions to users based on current or previous levels 

of interest in presented material. 

Classifying psychophysiological states using pattern 

recognition algorithms is standard practice in the 

laboratory. This multidisciplinary research area, 

concerned with affective or physiological computing 

applications, [6] has been used with varying degrees of 

success to determine emotional states [7, 8], cognitive 

workload [9] and physiological activation [10]. The 

research reported here is concerned solely with the 

application of the support vector machine (SVM) 

pattern recognition algorithm to classify two states, 

representing high and low interest, in an ambulatory 

setting focused on real-time deployment. 



  

Study: A Virtual Heritage installation 

Selection and creation of the classification engine are 

necessary first steps toward developing a real-time 

application for use within cultural heritage institutions. 

To this end, we created a virtual heritage installation 

that replicated in part, a late 18th century Valencia 

kitchen mosaic (installed with the Museo Nacional de 

Artes Decorativas). This allowed participants in the 

study to stand in a natural fashion, while 

simultaneously viewing the mosaic and listening to 

audio narrative about elements of the representation. 

The study was designed with a threefold purpose:  

1. To measure and classify psychophysiological 

reactivity in response to cultural heritage 

content presented as visual and audio stimuli 

2.  To define the psychophysiological variance as 

a two condition level of interest (high and low) 

3.  To evaluate the performance of the SVM 

classification algorithm for real-time application 

and the precision of the classifier, when 

compared to subjective response data 

Experimental Task 

Participants were asked to view a visual representation 

of the mosaic and to listen to an audio narration salient 

to the highlighted parts of the representation, then to 

answer post-hoc questions relating to interest level per 

auditory segment. 

Methodology 

10 subjects 2 male 8 female, aged 19-75 participated 

in the study. Physiological responses from the 

autonomic system was measured during experimental 

sessions, using the Electrocardiogram (ECG) and Skin 

Conductance Level (SCL) channels of the Mind Media 

Nexus X Mk II in lead 2 configuration for ECG and 

second and forth fingers of the non-dominant hand for 

SCR. Four channels of electroencephalographic (EEG) 

data were recorded using the Enobio wireless 4-channel 

sensor. A Biosemi EEG cap was fitted and inion/nasion 

aligned to ensure sensor placement (Figure 1). Electro-

conductive gel was added to sites FP1, FP2, F2 and F3 

and electrodes were attached. 

Procedure 

After receiving instruction about the experimental 

procedure, participants were asked to complete a 

consent form in accordance with the Liverpool John 

Moores Ethical Committees lease of ethical approval, 

and then fitted with a wearable pouch to hold the nexus 

sensor hardware at the hip. Electrodes for ECG were 

placed on the torso. The biosemi sensor cap was fitted 

and electrodes attached.  Participants were asked to 

stand in a relaxed position approximately 2 meters in 

front of a 2*3 meter projection screen. This was 

followed by the audio-visual presentation of the 

Valencia kitchen. The presentation of the kitchen 

stimulus was linear and timed to progress through the 

narrative, giving four stories consisting of 3 factual 

elements. On completion of the presentation each 

participant was asked to rate which two stories were 

perceived to be the most interesting out of the four that 

were presented. 

Analysis 

Prior to commencing classification analysis using the 

physiological data, features were derived* from 

measures of heart rate, skin conductance and EEG. This 

resulted in a total of 9 features for each of the 14 

stimulus events. These features were further 



  

subdivided into components of a three dimensional 

interest model. The interest model is comprised of 

activation, cognition and motivation, such that each 

feature set created a unique classifier feature vector for 

each element. 

This approach has a number of advantages. Each 

feature vector is identified as a separate element of the 

model, feature sets can be combined as a fusion of 

features, and the effect of each feature set or fusion of 

features on classifier class recall can be evaluated.  

Fusion refers to the combination of feature data, into a 

vector that represents either single or multiple 

dimensions of the interest model. Table 1 displays the 

feature sets and subsequent class recall accuracy of the 

classifier for each fusion of features. Feature sets are 

denoted by: A (activation); C (cognition); and M 

(motivation) with r representing raw values. 

Each participant’s data was analysed separately to 

determine the recall accuracy of the SVM classifier for 

individual participant responses. The SVM classifier is a 

supervised pattern recognition algorithm, requiring an n 

dimensional vector (observation) and an associated 

label (class) for training. This training set is then used 

as the basis for classifying new instances of data into 

its respective class. We used the SVM implementation 

by prtools [10] within matlab 2012Rb. Each feature set 

was tested using k-fold cross-validation. In k-fold 

cross-validation, k-1 folds are used for training and the 

last fold is used for evaluation. This process is repeated 

k times, leaving one different fold for evaluation each 

time. Furthermore, in order to test the capacity of the 

classifier to generalise across all participants, the 

feature data was combined into one dataset and 

classified twice: firstly, using 5 fold cross-validation and 

secondly, by splitting the dataset in two parts selected 

at random, one for training and one for testing. 

Results 

Table 1 summarises the results obtained from the 

subject-dependent classification of the feature data. 

The feature sets (activation, cognition and motivation) 

were classified alone and in combination, to determine 

which permutation of features provided the best class 

recall accuracy over all participants. Initial testing 

revealed that no benefit was gained by normalising the 

data for individual participant classifications. The data 

table indicates that the fusion of raw activation and 

cognition features afforded mean class recall accuracy 

across all participants of 80%, with a minimum 66% 

and maximum 100% spread over all participants. 

This significant classification rate offers strong evidence 

that the combination of activation and cognition 

features affords an effective method from which to 

ascertain a user’s level of interest in a cultural heritage 

setting. However, examining the individual recall rates 

in isolation shows that, for some participants, this 

combination of features resulted in lower class recall 

accuracies, highlighting the influence of individual 

differences in physiological responses towards the 

heritage material. 

: 𝑥 = 𝑙𝑛 (
𝑦 
 

𝑦 
 
) 

: 𝑥 = 𝑙𝑛(𝑧 
 − 𝑦 

 ) 

𝑧 =  
𝑋 − 𝜇

𝜎
 

*Feature Derivatives 

 Activation : mean heart 

rate, inter-beat interval and 

mean skin conductance level 

 Cognition : Where the 

ratio : 𝑥 is expressed as 

lognormal  (power) divided 

by   (power) at sites fp1 fp2 

f3 f4  

 Motivation : Where the 

ratio : 𝑥 is expressed as 

lognormal of  (power) 

subtracting right from left 

hemispheric activity at sites 

(fp1,fp2) and (f3,f4) 

 

 

 Normalisation : 

standard z score: 

Where Xi is the value to be 

scored 𝜇 is the columnar 

mean of the dataset and 𝜎 

the columnar standard 

deviation. 

Table 1 Subject dependent classifier recall accuracy, with 

mean recall accuracies. (Five-fold cross-validation) 

Feature(s) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Mean Recall

A r 0.44 0.72 0.80 0.83 0.90 0.80 0.63 0.89 0.67 0.90 76%

A r ,Cr 1.00 0.70 0.66 0.90 0.77 0.87 0.60 0.80 0.70 1.00 80%

A r ,M r 0.66 0.62 0.66 1.00 0.90 0.78 0.45 0.88 0.66 1.00 76%

A r ,Cr ,M r 0.81 0.62 0.70 0.90 0.80 0.67 0.60 0.80 0.70 1.00 76%

Cr ,M r 1.00 0.66 0.66 0.50 0.66 0.77 0.80 0.77 0.81 1.00 76%

Cr 0.87 0.90 0.72 0.55 0.50 0.44 0.80 0.70 0.87 1.00 74%

M r 0.75 0.55 0.60 0.54 0.83 0.60 0.50 0.87 1.00 0.80 70%



  

When comparing the classifier recall accuracies from 

other feature sets, it can be seen that the features of 

activation alone are only 3% less accurate overall than 

those of the combined activation and cognitive feature 

sets, with a maximum of 77% mean recall accuracy. 

However, although this result was promising, there can 

be seen a greater (negative) intra-subject classification 

variation in recall accuracies, when compared with the 

combined feature set. Combining the features of 

activation with motivation, or cognition with motivation 

provided no clear benefit to recall accuracies with a 

maximum recall accuracy of 76% respectively for raw 

feature data.  

Findings from the literature and previously completed 

work indicate that problems exist with classifier 

generalisation accuracy due to magnitude differences in 

psychophysiological responses between individuals. In 

generalisation tests the classifier reported a steep drop 

in accuracy in line with these findings. However, 

combining all three feature sets resulted in a predictive 

accuracy of 65%, still 15% above that of chance. It was 

these finding that informed the development of the 

current subject-dependent classifier approach. 

Discussion and Conclusions  

The results of this study provide strong evidence, that 

the combination of activation and cognition features 

coupled with a subject-dependent classification 

approach and the SVM classifier can reliably infer the 

“knowledge emotion” interest within a cultural heritage 

context. It is interesting to note however, that these 

same results also highlight the possibility that an 

approach based on an ensemble of classifiers for each 

dimension of the interest model may provide even 

greater recall accuracies compared to a combined 

approach. Furthermore, another approach we seek to 

pursue involves the use of a real-time decision engine 

consisting of gated threshold logic for each feature set, 

which would map magnitude variance as it occurs onto 

the model of interest. 

We set an initial accuracy floor of 75% below which 

interactive systems using the bio-sensing component 

would become unusable. This figure was determined 

arbitrarily, thus requiring further research. The results 

show that, overall, the approach taken can exceed this 

figure. The next task is to integrate the bio-sensing 

component into an interactive system and evaluate its 

performance using receiver operator characteristic 

techniques and real-time user feedback, to determine 

the level of acceptable accuracy for users of the system 

and create a model of adaptivity. This is currently work 

in progress and a real-time interactive heritage 

application is in development. We envision many 

possible applications of this approach within the context 

of cultural heritage, such as automated or semi-

automated recommendation of cultural heritage content 

informed by real-time psychophysiological assessment 

(a digital curator) or “interest” profiling involving 

implicit tagging of heritage material to build up heat 

maps that use interest as a basis to inform future 

interactions.  

Furthermore, by modifying the psychophysiological 

measures under investigation the reach of the approach 

can be extended into areas outside of the cultural 

heritage context, such as targeted marketing and 

media or even e-health. We understand that the 

current state of the art for ambulatory sensor 

technologies is still somewhat intrusive to individuals. 

However, early usage statistics from users wearing the 

sensors appear favorable, possibly due to the extreme 

 

Figure 1 The International 10-20 

(EEG) System 

 



  

novelty of the technology. Moreover, improvements in 

ambulatory sensor technology are accelerating, with 

“tattoo”, nano-scale and microwave emission sensor 

technologies in development, making the intrusiveness 

and social stigma of wearing bulky technologies less of 

an-issue. 
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